scholarly journals Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions

2012 ◽  
Vol 3 ◽  
Author(s):  
Maurizio Tosin ◽  
Miriam Weber ◽  
Michela Siotto ◽  
Christian Lott ◽  
Francesco Degli Innocenti
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2315
Author(s):  
Christian Meltebrink ◽  
Tom Ströer ◽  
Benjamin Wegmann ◽  
Cornelia Weltzien ◽  
Arno Ruckelshausen

As an essential part for the development of autonomous agricultural robotics, the functional safety of autonomous agricultural machines is largely based on the functionality and robustness of non-contact sensor systems for human protection. This article presents a new step in the development of autonomous agricultural machine with a concept and the realization of a novel test method using a dynamic test stand on an agricultural farm in outdoor areas. With this test method, commercially available sensor systems are tested in a long-term test around the clock for 365 days a year and 24 h a day on a dynamic test stand in continuous outdoor use. A test over a longer period of time is needed to test as much as possible all occurring environmental conditions. This test is determined by the naturally occurring environmental conditions. This fact corresponds to the reality of unpredictable/determinable environmental conditions in the field and makes the test method and test stand so unique. The focus of the developed test methods is on creating own real environment detection areas (REDAs) for each sensor system, which can be used to compare and evaluate the autonomous human detection of the sensor systems for the functional safety of autonomous agricultural robots with a humanoid test target. Sensor manufacturers from industry and the automotive sector provide their sensor systems to have their sensors tested in cooperation with the TÜV.


Transport ◽  
2016 ◽  
Vol 31 (3) ◽  
pp. 322-332 ◽  
Author(s):  
Alfredas Laurinavičius ◽  
Donatas Čygas ◽  
Audrius Vaitkus ◽  
Tomas Ratkevičius ◽  
Matas Bulevičius ◽  
...  

In 2012, the Lithuanian Road Administration initiated a three-year research project ‘The study of effective winter road maintenance of national significance roads in Lithuania’. The main purpose of this research was to optimize road maintenance in winter and to determine the most effective means of combating slippery conditions. The research project was carried out by two institutions: the Road Research Institute of the Faculty of Environmental Engineering of Vilnius Gediminas Technical University and JSC ‘Problematika’. JSC ‘Problematika’ conducted exploratory experiments, which were divided into two phases. In the first phase of the experiment, five different snow melting materials (Slipperiness Reducing Materials – SRMs) were investigated in the laboratory. Different test methods were used in this investigation. In the second phase of the experiment, three SRMs with different properties were selected, and experimental road sections were set up to determine the road slipperiness and the change in coating layer thickness over time concerning different environmental conditions, as well as different snow and ice layer thicknesses. An optical remote sensor of Road Condition Monitor (RCM 411) was used for friction measurements on the roads. This report covers the laboratory test results of five different SRMs, road slipperiness measurement results using three selected SRMs and their analysis, comparison of the performance efficiency of the most widely used SRMs in Lithuania and the tested SRMs under different environmental conditions.


Author(s):  
Patricia Karg ◽  
David Brienza ◽  
Alexandra Delazio ◽  
Lauren Terhorst ◽  
Clair Smith
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document