scholarly journals Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example

2015 ◽  
Vol 6 ◽  
Author(s):  
Hironori Taniguchi ◽  
Volker F. Wendisch
2006 ◽  
Vol 84 (4) ◽  
pp. 345-345
Author(s):  
Yusuke Inoue ◽  
L. Luanne Peters ◽  
Sun Hee Yim ◽  
Junko Inoue ◽  
Frank J. Gonzalez

2000 ◽  
Vol 182 (10) ◽  
pp. 2919-2927 ◽  
Author(s):  
Ya-Lin Sun ◽  
Marc D. Sharp ◽  
Kit Pogliano

ABSTRACT During the stage of engulfment in the Bacillus subtilisspore formation pathway, the larger mother cell engulfs the smaller forespore. We have tested the role of forespore-specific gene expression in engulfment using two separate approaches. First, using an assay that unambiguously detects sporangia that have completed engulfment, we found that a mutant lacking the only forespore-expressed engulfment protein identified thus far, SpoIIQ, is able to efficiently complete engulfment under certain sporulation conditions. However, we have found that the mutant is defective, under all conditions, in the expression of the late-forespore-specific transcription factor ςG; thus, SpoIIQ is essential for spore production. Second, to determine if engulfment could proceed in the absence of forespore-specific gene expression, we made use of a strain in which activation of the mother cell-specific sigma factor ςE was uncoupled from forespore-specific gene expression. Remarkably, engulfment occurred in the complete absence of ςF-directed gene expression under the same conditions permissive for engulfment in the absence of SpoIIQ. Our results demonstrate that forespore-specific gene expression is not essential for engulfment, suggesting that the machinery used to move the membranes around the forespore is within the mother cell.


2009 ◽  
Vol 191 (18) ◽  
pp. 5634-5640 ◽  
Author(s):  
Matt Shirley ◽  
Iain L. Lamont

ABSTRACT Pyoverdines are siderophores secreted by Pseudomonas aeruginosa. Uptake of ferripyoverdine in P. aeruginosa PAO1 occurs via the FpvA receptor protein and requires the energy-transducing protein TonB1. Interaction of (ferri)pyoverdine with FpvA activates pyoverdine gene expression in a signaling process involving the cytoplasmic-membrane-spanning anti-sigma factor FpvR and the sigma factor PvdS. Here, we show that mutation of a region of FpvA that interacts with TonB1 (the TonB box) prevents this signaling process, as well as inhibiting bacterial growth in the presence of the iron-chelating compound ethylenediamine-di(o-hydroxy-phenylacetic acid). Signaling via wild-type FpvA was also eliminated in strains lacking TonB1 but was unaffected in strains lacking either (or both) of two other TonB proteins in P. aeruginosa, TonB2 and TonB3. An absence of pyoverdine-mediated signaling corresponded with proteolysis of PvdS. These data show that interactions between FpvA and TonB1 are required for (ferri)pyoverdine signal transduction, as well as for ferripyoverdine transport, consistent with a mechanistic link between the signaling and transport functions of FpvA.


2002 ◽  
Vol 45 (2) ◽  
pp. 365-374 ◽  
Author(s):  
Riccardo Manganelli ◽  
Martin I. Voskuil ◽  
Gary K. Schoolnik ◽  
Eugenie Dubnau ◽  
Manuel Gomez ◽  
...  

2008 ◽  
Vol 190 (14) ◽  
pp. 4979-4988 ◽  
Author(s):  
Supreet Saini ◽  
Jonathon D. Brown ◽  
Phillip D. Aldridge ◽  
Christopher V. Rao

ABSTRACT Flagellar assembly proceeds in a sequential manner, beginning at the base and concluding with the filament. A critical aspect of assembly is that gene expression is coupled to assembly. When cells transition from a nonflagellated to a flagellated state, gene expression is sequential, reflecting the manner in which the flagellum is made. A key mechanism for establishing this temporal hierarchy is the σ28-FlgM checkpoint, which couples the expression of late flagellar (Pclass3) genes to the completion of the hook-basal body. In this work, we investigated the role of FliZ in coupling middle flagellar (Pclass2) gene expression to assembly in Salmonella enterica serovar Typhimurium. We demonstrate that FliZ is an FlhD4C2-dependent activator of Pclass2/middle gene expression. Our results suggest that FliZ regulates the concentration of FlhD4C2 posttranslationally. We also demonstrate that FliZ functions independently of the flagellum-specific sigma factor σ28 and the filament-cap chaperone/FlhD4C2 inhibitor FliT. Furthermore, we show that the previously described ability of σ28 to activate Pclass2/middle gene expression is, in fact, due to FliZ, as both are expressed from the same overlapping Pclass2 and Pclass3 promoters at the fliAZY locus. We conclude by discussing the role of FliZ regulation with respect to flagellar biosynthesis based on our characterization of gene expression and FliZ's role in swimming and swarming motility.


Sign in / Sign up

Export Citation Format

Share Document