scholarly journals Thiomonas sp. CB2 is able to degrade urea and promote toxic metal precipitation in acid mine drainage waters supplemented with urea

2015 ◽  
Vol 6 ◽  
Author(s):  
Julien Farasin ◽  
Jérémy Andres ◽  
Corinne Casiot ◽  
Valérie Barbe ◽  
Jacques Faerber ◽  
...  
2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Denise M. Akob ◽  
Michelle Hallenbeck ◽  
Felix Beulig ◽  
Maria Fabisch ◽  
Kirsten Küsel ◽  
...  

ABSTRACT Natural attenuation of heavy metals occurs via coupled microbial iron cycling and metal precipitation in creeks impacted by acid mine drainage (AMD). Here, we describe the isolation, characterization, and genomic sequencing of two iron-oxidizing bacteria (FeOB) species: Thiomonas ferrovorans FB-6 and Thiomonas metallidurans FB-Cd, isolated from slightly acidic (pH 6.3), Fe-rich, AMD-impacted creek sediments. These strains precipitated amorphous iron oxides, lepidocrocite, goethite, and magnetite or maghemite and grew at a pH optimum of 5.5. While Thiomonas spp. are known as mixotrophic sulfur oxidizers and As oxidizers, the FB strains oxidized Fe, which suggests they can efficiently remove Fe and other metals via coprecipitation. Previous evidence for Thiomonas sp. Fe oxidation is largely ambiguous, possibly because of difficulty demonstrating Fe oxidation in heterotrophic/mixotrophic organisms. Therefore, we also conducted a genomic analysis to identify genetic mechanisms of Fe oxidation, other metal transformations, and additional adaptations, comparing the two FB strain genomes with 12 other Thiomonas genomes. The FB strains fall within a relatively novel group of Thiomonas strains that includes another strain (b6) with solid evidence of Fe oxidation. Most Thiomonas isolates, including the FB strains, have the putative iron oxidation gene cyc2, but only the two FB strains possess the putative Fe oxidase genes mtoAB. The two FB strain genomes contain the highest numbers of strain-specific gene clusters, greatly increasing the known Thiomonas genetic potential. Our results revealed that the FB strains are two distinct novel species of Thiomonas with the genetic potential for bioremediation of AMD via iron oxidation. IMPORTANCE As AMD moves through the environment, it impacts aquatic ecosystems, but at the same time, these ecosystems can naturally attenuate contaminated waters via acid neutralization and catalyzing metal precipitation. This is the case in the former Ronneburg uranium-mining district, where AMD impacts creek sediments. We isolated and characterized two iron-oxidizing Thiomonas species that are mildly acidophilic to neutrophilic and that have two genetic pathways for iron oxidation. These Thiomonas species are well positioned to naturally attenuate AMD as it discharges across the landscape.


2021 ◽  
Vol 13 (15) ◽  
pp. 8118
Author(s):  
Sandisiwe Khanyisa Thisani ◽  
Daramy Vandi Von Kallon ◽  
Patrick Byrne

This paper reviews the Acid Mine Drainage (AMD) remediation potential and operational costs of twelve existing AMD remediation methods against Class 0 and Class I AMD geochemical characteristics as defined in the Modified Hill Framework. Of the twelve remediation options reviewed in this study, eleven required additional process steps either for further treatment to achieve the discharge limits or for the safe management of hazardous waste by-products. Chemical desalination showed the greatest potential with high quality treated water and operational costs between USD 0.25 and USD 0.75 per cubic meter treated. The management of the toxic metal and sulphide by-products remains a key challenge that requires further research for sustainable mine water remediation. Further development of end-to-end methods suitable for Class 0 AMD with economical operational costs is recommended in order to effectively address the ongoing environmental challenges posed by AMD globally.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 909
Author(s):  
Iwona Zawierucha ◽  
Anna Nowik-Zajac ◽  
Grzegorz Malina

Acid mine drainage (AMD) is globally recognized as one of the environmental pollutants of the priority concern due to high concentrations of toxic metals and sulfates. More rigorous environmental legislation requires exploitation of effective technologies to remove toxic metals from contaminated streams. In view of high selectivity, effectiveness, durability, and low energy demands, the separation of toxic metal ions using immobilized membranes with admixed extractants could ameliorate water quality. Cellulose triacetate based polymer inclusion membranes (PIMs), with extractant and plasticizer, were studied for their ability to transport of As(V) ions from synthetic aqueous leachates. The effects of the type and concentration of extractant, plasticizer content, and sulfuric acid concentration in source phase on the arsenic removal efficiency have been assessed. Under the best of applied conditions, PIM with Cyanex 921 as extractant and o-nitrophenyl octyl ether (o-NPOE) as plasticizer showed high repeatability and excellent transport activity for selective removal of As(V) from AMD.


Sign in / Sign up

Export Citation Format

Share Document