scholarly journals Insight into the Molecular Mechanism of the Transcriptional Regulation of amtB Operon in Streptomyces coelicolor

2018 ◽  
Vol 9 ◽  
Author(s):  
Zhendong Li ◽  
Xinqiang Liu ◽  
Jingzhi Wang ◽  
Ying Wang ◽  
Guosong Zheng ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0167763 ◽  
Author(s):  
Michele D. Kattke ◽  
Albert H. Chan ◽  
Andrew Duong ◽  
Danielle L. Sexton ◽  
Michael R. Sawaya ◽  
...  

2015 ◽  
Vol 173 ◽  
pp. 91-99 ◽  
Author(s):  
Yi-min Ma ◽  
Xin-zhuang Zhang ◽  
Zhen-zhen Su ◽  
Na Li ◽  
Liang Cao ◽  
...  

2015 ◽  
Vol 113 ◽  
pp. 127-142 ◽  
Author(s):  
Rekha Jain ◽  
Prajakta Kulkarni ◽  
Snigdha Dhali ◽  
Srikanth Rapole ◽  
Sanjeeva Srivastava

2010 ◽  
Vol 29 (20) ◽  
pp. 3437-3447 ◽  
Author(s):  
Carsten Peters ◽  
Katjuša Brejc ◽  
Lisa Belmont ◽  
Andrew J Bodey ◽  
Yan Lee ◽  
...  

2018 ◽  
Vol 200 (8) ◽  
Author(s):  
Yang Zhang ◽  
Jun Yang ◽  
Guangchun Bai

ABSTRACT Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas) provide bacteria and archaea with adaptive immunity to specific DNA invaders. Mycobacterium tuberculosis encodes a type III CRISPR-Cas system that has not been experimentally explored. In this study, we found that the CRISPR-Cas systems of both M. tuberculosis and Mycobacterium bovis BCG were highly upregulated by deletion of Rv2837c ( cnpB ), which encodes a multifunctional protein that hydrolyzes cyclic di-AMP (c-di-AMP), cyclic di-GMP (c-di-GMP), and nanoRNAs (short oligonucleotides of 5 or fewer residues). By using genetic and biochemical approaches, we demonstrated that the CnpB-controlled transcriptional regulation of the CRISPR-Cas system is mediated by an Orn-like activity rather than by hydrolyzing the cyclic dinucleotides. Additionally, our results revealed that tuberculosis (TB) complex mycobacteria are functional in processing CRISPR RNAs (crRNAs), which are also more abundant in the Δ cnpB strain than in the parent strain. The elevated crRNA levels in the Δ cnpB strain could be partially reduced by expressing Escherichia coli orn . Our findings provide new insight into transcriptional regulation of bacterial CRISPR-Cas systems. IMPORTANCE Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas) provide adaptive immunity to specific DNA invaders. M. tuberculosis encodes a type III CRISPR-Cas system that has not been experimentally explored. In this study, we first demonstrated that the CRISPR-Cas systems in tuberculosis (TB) complex mycobacteria are functional in processing CRISPR RNAs (crRNAs). We also showed that Rv2837c (CnpB) controls the expression of the CRISPR-Cas systems in TB complex mycobacteria through an oligoribonuclease (Orn)-like activity, which is very likely mediated by nanoRNA. Since little is known about regulation of CRISPR-Cas systems, our findings provide new insight into transcriptional regulation of bacterial CRISPR-Cas systems.


2021 ◽  
Author(s):  
Liheng Chen ◽  
Si-Man Luo ◽  
Cong-Min Huo ◽  
Yun-Feng Shi ◽  
Jun Feng ◽  
...  

Understanding the molecular mechanism of lignin nanoparticle (LNP) formation will precisely instruct its functionalization, which is of importance for biomass valorization.


2018 ◽  
Vol 19 (9) ◽  
pp. 2589 ◽  
Author(s):  
Tianqi Lyu ◽  
Jiashu Cao

Flower development is the core of higher-plant ontogenesis and is controlled by complex gene regulatory networks. Cys2/His2 zinc-finger proteins (C2H2-ZFPs) constitute one of the largest transcription factor families and are highly involved in transcriptional regulation of flowering induction, floral organ morphogenesis, and pollen and pistil maturation. Nevertheless, the molecular mechanism of C2H2-ZFPs has been gradually revealed only in recent years. During flowering induction, C2H2-ZFPs can modify the chromatin of FLOWERING LOCUS C, thereby providing additional insights into the quantification of transcriptional regulation caused by chromatin regulation. C2H2-ZFPs are involved in cell division and proliferation in floral organ development and are associated with hormonal regulation, thereby revealing how a flower is partitioned into four developmentally distinct whorls. The studies reviewed in this work integrate the information from the endogenous, hormonal, and environmental regulation of flower development. The structure of C2H2-ZFPs determines their function as transcriptional regulators. The findings indicate that C2H2-ZFPs play a crucial role in flower development. In this review, we summarize the current understanding of the structure, expression, and function of C2H2-ZFPs and discuss their molecular mechanism in flower development.


Author(s):  
Akhilesh Kumar Singh ◽  
Laxuman Sharma ◽  
Janmejai Kumar Srivastava ◽  
Nirupama Mallick ◽  
Mohammad Israil Ansari

Sign in / Sign up

Export Citation Format

Share Document