Insight into the molecular mechanism of a herbal injection by integrating network pharmacology and in vitro

2015 ◽  
Vol 173 ◽  
pp. 91-99 ◽  
Author(s):  
Yi-min Ma ◽  
Xin-zhuang Zhang ◽  
Zhen-zhen Su ◽  
Na Li ◽  
Liang Cao ◽  
...  
2021 ◽  
Author(s):  
Chunxiao Wu ◽  
Qiquan Yu ◽  
Weizhen Shou ◽  
Kun Zhang ◽  
Yang Li ◽  
...  

Background: Jin Ning Fang (JNF) is widely used as an adjuvant therapy for lung cancer. However, its molecular mechanism against lung cancer is still unclear. Methods: The chemical compounds JNF were screened from the TCMSP database and its target proteins were then predicted. The genes related to lung cancer were collected from the CTD and DisGeNET databases. Next, targets were integrated with disease-related genes to obtain candidate genes. Functional enrichment and protein-protein interaction (PPI) analysis were also performed, followed by construction of pharmacological network. Meanwhile, Autodock was used to assess the affinity between targets and compound. Finally, the anti-cancer effect of JNF on lung cancer cells was detected and some predicted key genes was validated by using real-time PCR. Results: Twenty-five overlapping targets were obtained, and pathway analysis showed that JNF might exert its anti-cancer function by regulating some biological pathways, such as apoptosis pathway. PPI and pharmacological network revealed several core targets (such as AKT1, AR, and ESR1) and three compounds (quercetin, calcium carbonate, and beta-sitosterol). Then, beta-sitosterol had a high affinity with AKT1, AR, and ESR1. Further in vitro experiments confirmed that JNF could inhibit proliferation and promote apoptosis of A549 cells. The expression of FDPS, PIM1, VCAM1, SLC29A1, NQO1, and ESR1 were significantly decreased, while mRNA level of AR and ANPEP were markedly increased after JNF treatment. Conclusion: JNF may exert anti-lung cancer effect through multiple targets and pathways, and identified genes may be used as potential biomarkers for diagnosis and treatment of lung cancer.


2021 ◽  
Vol 15 (5) ◽  
pp. 663-670
Author(s):  
Jun Li ◽  
Shirun Chu ◽  
Mei Yang ◽  
Jungang Yue ◽  
Lu Wang ◽  
...  

Bletilla striata is a rare traditional Chinese medicine with protective effect for neuropsychiatric system. Nevertheless, the material basis and molecular mechanism of this effect remain unclear. By means of network pharmacology, five common neuropsychiatric targets for B. striata ingredients that can pass through the blood-brain barrier were conducted to probe the material basis and molecular mechanism of its neuropsychiatric protecting effects. Besides, the in vitro model of neurons injury was built to verify the effect of these ingredients on neurons. Results indicated that 8 active ingredients and 21 core targets were screened, and 9 groups of gene functional groups were screened by GO analysis. The KEGG pathway enrichment revealed that, 14 signal pathways were mapped and 6 REACTOME Pathways and 33 Wiki Pathways were also detected. Preliminary experimental verification demonstrated that, B. striata protected, maintained and enhanced neuronal cell activity and up-regulated the expression of DRD2 and GRM2 genes through dihydrophenanthrene compounds. From the above results, we speculated that B. striata may act on multi-target gene functional groups through multiple ingredients, resulting in various effects, thus achieving the purpose of protecting the neuropsychiatric system, as well as its functions. Our research findings also suggested that the experimental research method combining network pharmacology with experimental cell research is effective for quickly analyzing the material basis and molecular mechanism of B. striata in protecting the neuropsychiatric system and treating neuropsychiatric diseases.


2021 ◽  
Vol 16 (12) ◽  
pp. 1934578X2110672
Author(s):  
Jialin Wei ◽  
Zhiyuan Sun ◽  
Li Shi ◽  
Shaodan Hu ◽  
Da Liu ◽  
...  

This study elucidated the potential molecular mechanism of chrysin in hepatocellular carcinoma (HCC) treatment using network pharmacology and in vitro experiments. Chrysin and candidate targets of HCC were obtained from the TCMSP and DrugBank databases, followed by mapping and screening of chrysin and HCC targets to identify the core targets of chrysin in HCC treatment. The interaction of chrysin and its targets, including CDK1, CDK5, as well as MMP9, were evaluated by molecular docking. The STRING database and Cytoscape (version 3.8.2) software were used to construct protein interactions and component-target networks of the core targets. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis of the core target genes were performed using the DAVID database. Network pharmacology results showed that chrysin treatment of HCC was mainly related to cell proliferation and cell cycle. Accordingly, the cell counting kit-8 method and flow cytometry were used to detect the cell viability and cell cycle of hepatocarcinoma cells HCCLM3 and BEL-7402 in vitro. A total of 142 compound targets of chrysin, 12,179 HCC-related targets, and 116 intersecting targets were screened. The first 20 GO biological annotations of 17 core targets and the first 20 KEGG pathways mainly involved cell proliferation and cell cycle. In vitro experiments showed that chrysin inhibits the proliferation of human hepatocarcinoma cells (HCCLM3 and BEL-7402) in a dose-dependent manner. Moreover, chrysin induced cell cycle arrest in HCCLM3 and BEL-7402 cells in the G2 phase, and the expression was downregulated of cyclin-dependent kinases (CDKs), CDK2 and CDK4. Chrysin can offset HCC mainly by regulating the cell cycle and inhibiting cell proliferation. The network pharmacology results were verified, providing the basis for further study on the mechanism of chrysin intervention in HCC.


2022 ◽  
Vol 36 ◽  
pp. 205873842110639
Author(s):  
Bingjie Huo ◽  
Yanru Song ◽  
Bibo Tan ◽  
Jianbo Li ◽  
Jie Zhang ◽  
...  

Background: Modern pharmacological studies have shown that traditional Chinese medicine (TCM) Taraxacum mongolicum possesses anti-cancer activity. Taraxerol (TRX) is a pentacyclic triterpene isolated from T. mongolicum, which is widely used in clinical treatment, and its anti-cancer effects have been extensively studied. However, the effects and molecular mechanism of TRX in gastric cancer (GC) have not been fully explicated. Methods: We used public databases to derive information on potential targets of TRX and proteins related to GC. Also, STRING and R3.6.2 software were used to analyze the protein–protein interaction (PPI). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were done to explain the potential mechanism underlying the regulatory role of TRX in GC. The role of TRX in GC was verified by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, apoptosis analysis, Transwell assay, and wound healing assay, and the key signaling pathways were verified. Results: We identified 135 potential targets for the treatment of GC via network pharmacological analysis. GO and KEGG enrichment analysis showed that steroid hormone receptor activity and the PI3K/AKT signaling pathway were the biological processes and pathways with the highest degree of enrichment. Additionally, cellular experiments revealed that TRX inhibited the proliferation, migration, and invasion of GC cells as well as induced G1 phase arrest and apoptosis in GC cells. Conclusion: Here, we used multi-target and multi-pathway network pharmacological analysis to verify the anti-cancer activity of TRX in GC. Also, in vitro experimental data were used to derive the potential molecular mechanism.


2004 ◽  
Vol 190 (5) ◽  
pp. 343-357 ◽  
Author(s):  
F. Clarac ◽  
E. Pearlstein ◽  
J. F. Pflieger ◽  
L. Vinay

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fujiao Nie ◽  
Jiazhao Yan ◽  
Yanjun Ling ◽  
Zhengrong Liu ◽  
Chaojun Fu ◽  
...  

Abstract Background Diabetic retinopathy (DR) has become a worldwide concern because of the rising prevalence rate of diabetes mellitus (DM). Despite much energy has been committed to DR research, it remains a difficulty for diabetic patients all over the world. Since apoptosis of retinal microvascular pericytes (RMPs) is the early characteristic of DR, this study aimed to reveal the mechanism of Shuangdan Mingmu (SDMM) capsule, a Chinese patent medicine, on oxidative stress-induced apoptosis of pericytes implicated with poly (ADP-ribose) polymerase (PARP) / glyceraldehyde 3-phosphate dehydrogenase (GAPDH) pathway. Methods Network pharmacology approach was performed to predict biofunction of components of SDMM capsule dissolved in plasma on DR. Both PARP1 and GAPDH were found involved in the hub network of protein-protein interaction (PPI) of potential targets and were found to take part in many bioprocesses, including responding to the regulation of reactive oxygen species (ROS) metabolic process, apoptotic signaling pathway, and response to oxygen levels through enrichment analysis. Therefore, in vitro research was carried out to validate the prediction. Human RMPs cultured with media containing 0.5 mM hydrogen oxide (H2O2) for 4 h was performed as an oxidative-damage model. Different concentrations of SDMM capsule, PARP1 inhibitor, PARP1 activation, and GAPDH inhibitor were used to intervene the oxidative-damage model with N-Acetyl-L-cysteine (NAC) as a contrast. Flow cytometry was performed to determine the apoptosis rate of cells and the expression of ROS. Cell counting kit 8 (CCK8) was used to determine the activity of pericytes. Moreover, nitric oxide (NO) concentration of cells supernatant and expression of endothelial nitric oxide synthase (eNOS), superoxide dismutase (SOD), B cell lymphoma 2 (BCL2), vascular endothelial growth factor (VEGF), endothelin 1 (ET1), PARP1, and GAPDH were tested through RT-qPCR, western blot (WB), or immunocytochemistry (ICC). Results Overproduction of ROS, high apoptotic rate, and attenuated activity of pericytes were observed after cells were incubated with media containing 0.5 mM H2O2. Moreover, downregulation of SOD, NO, BCL2, and GAPDH, and upregulation of VEGFA, ET1, and PARP1 were discovered after cells were exposed to 0.5 mM H2O2 in this study, which could be improved by PARP1 inhibitor and SDMM capsule in a dose-dependent way, whereas worsened by PARP1 activation and GAPDH inhibitor. Conclusions SDMM capsule may attenuate oxidative stress-induced apoptosis of pericytes through downregulating PARP expression and upregulating GAPDH expression.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Qiudan Chen ◽  
Weifeng Wang ◽  
Shuying Chen ◽  
Xiaotong Chen ◽  
Yong Lin

AbstractRecently, pivotal functions of miRNAs in regulating common tumorigenic processes and manipulating signaling pathways in brain tumors have been recognized; notably, miR‐29a is closely associated with p53 signaling, contributing to the development of glioma. However, the molecular mechanism of the interaction between miR-29a and p53 signaling is still to be revealed. Herein, a total of 30 glioma tissues and 10 non-cancerous tissues were used to investigate the expression of miR‐29a. CCK-8 assay and Transwell assay were applied to identify the effects of miR-29a altered expression on the malignant biological behaviors of glioma cells in vitro, including proliferation, apoptosis, migration and invasion. A dual-luciferase reporter assay was used to further validate the regulatory effect of p53 or miR-29a on miR-29a or MDM2, respectively, at the transcriptional level. The results showed that miR-29a expression negatively correlated with tumor grade of human gliomas; at the same time it inhibited cell proliferation, migration, and invasion and promoted apoptosis of glioma cells in vitro. Mechanistically, miR-29a expression was induced by p53, leading to aberrant expression of MDM2 targeted by miR-29a, and finally imbalanced the activity of the p53-miR-29a-MDM2 feedback loop. Moreover, miR-29a regulating p53/MDM2 signaling sensitized the response of glioma cells to temozolomide treatment. Altogether, the study demonstrated a potential molecular mechanism in the tumorigenesis of glioma, while offering a possible target for treating human glioma in the future.


Sign in / Sign up

Export Citation Format

Share Document