scholarly journals Modeling the Survival of Escherichia coli O157:H7 Under Hydrostatic Pressure, Process Temperature, Time and Allyl Isothiocyanate Stresses in Ground Chicken Meat

2018 ◽  
Vol 9 ◽  
Author(s):  
Chi-Yun Huang ◽  
Shiowshuh Sheen ◽  
Christopher Sommers ◽  
Lee-Yan Sheen
2016 ◽  
Vol 36 (2) ◽  
pp. 186-193 ◽  
Author(s):  
Jina Seo ◽  
Dong Joo Seo ◽  
Hyejin Oh ◽  
Su Been Jeon ◽  
Mi-Hwa Oh ◽  
...  

2008 ◽  
Vol 71 (1) ◽  
pp. 6-12 ◽  
Author(s):  
A. PALANICHAMY ◽  
D. S. JAYAS ◽  
R. A. HOLLEY

The Canadian Food Inspection Agency required the meat industry to ensure Escherichia coli O157:H7 does not survive (experiences ≥ 5 log CFU/g reduction) in dry fermented sausage (salami) during processing after a series of foodborne illness outbreaks resulting from this pathogenic bacterium occurred. The industry is in need of an effective technique like predictive modeling for estimating bacterial viability, because traditional microbiological enumeration is a time-consuming and laborious method. The accuracy and speed of artificial neural networks (ANNs) for this purpose is an attractive alternative (developed from predictive microbiology), especially for on-line processing in industry. Data from a study of interactive effects of different levels of pH, water activity, and the concentrations of allyl isothiocyanate at various times during sausage manufacture in reducing numbers of E. coli O157:H7 were collected. Data were used to develop predictive models using a general regression neural network (GRNN), a form of ANN, and a statistical linear polynomial regression technique. Both models were compared for their predictive error, using various statistical indices. GRNN predictions for training and test data sets had less serious errors when compared with the statistical model predictions. GRNN models were better and slightly better for training and test sets, respectively, than was the statistical model. Also, GRNN accurately predicted the level of allyl isothiocyanate required, ensuring a 5-log reduction, when an appropriate production set was created by interpolation. Because they are simple to generate, fast, and accurate, ANN models may be of value for industrial use in dry fermented sausage manufacture to reduce the hazard associated with E. coli O157:H7 in fresh beef and permit production of consistently safe products from this raw material.


2018 ◽  
Vol 81 (8) ◽  
pp. 1227-1235 ◽  
Author(s):  
MINGMING GUO ◽  
TONY Z. JIN ◽  
JOSHUA B. GURTLER ◽  
XUETONG FAN ◽  
MADHAV P. YADAV

ABSTRACT Antimicrobial washing (AW), antimicrobial coating (AC), and a combination of washing followed by coating (AW+AC) were evaluated for their ability to inactivate artificially inoculated foodborne pathogens and native microbiota on strawberries stored at 4°C. Strawberries were inoculated with a six-strain composite of Escherichia coli O157:H7 and Salmonella; treated by AW, AC, or AW+AC; and stored at 4°C for 3 weeks. The washing solution contained 90 ppm of peracetic acid, and the coating solution consisted of chitosan (1%, w/v), allyl isothiocyanate (1%, v/v), and corn-bio fiber gum (5%, w/v). The effectiveness of the antimicrobial treatments against E. coli O157:H7 and Salmonella pathogens and native microflora on strawberries and their impact on fruit quality (appearance, weight loss, color, and firmness) were determined. By the end of storage, pathogen populations on strawberries were 2.5 (AW+AC), 2.9 (AC), 3.8 (AW), and 4.2 log CFU for the positive (untreated) control. AW+AC treatments also inactivated the greatest population of native microflora, followed by the AC treatment alone. AW+AC treatments showed additional antimicrobial effectiveness against these two pathogens and native microflora. Both AW+AC and AC treatments preserved the color, texture, and appearance of strawberries throughout storage. The coating treatments (AW+AC and AC alone) further reduced the loss of moisture throughout storage. The AW treatment was the least effective in reducing populations of pathogens and native microflora and in maintaining the quality of strawberries throughout storage. This study demonstrates a method to improve the microbiological safety, shelf life, and quality of strawberries.


1999 ◽  
Vol 62 (8) ◽  
pp. 857-860 ◽  
Author(s):  
KUMAR S. VENKITANARAYANAN ◽  
GABRIEL O. I. EZEIKE ◽  
YEN-CON HUNG ◽  
MICHAEL P. DOYLE

One milliliter of culture containing a five-strain mixture of Escherichia coli O157:H7 (∼1010 CFU) was inoculated on a 100-cm2 area marked on unscarred cutting boards. Following inoculation, the boards were air-dried under a laminar flow hood for 1 h, immersed in 2 liters of electrolyzed oxidizing water or sterile deionized water at 23°C or 35°C for 10 or 20 min; 45°C for 5 or 10 min; or 55°C for 5 min. After each temperature–time combination, the surviving population of the pathogen on cutting boards and in soaking water was determined. Soaking of inoculated cutting boards in electrolyzed oxidizing water reduced E. coli O157:H7 populations by ≥5.0 log CFU/100 cm2 on cutting boards. However, immersion of cutting boards in deionized water decreased the pathogen count only by 1.0 to 1.5 log CFU/100 cm2. Treatment of cutting boards inoculated with Listeria monocytogenes in electrolyzed oxidizing water at selected temperature–time combinations (23°C for 20 min, 35°C for 10 min, and 45°C for 10 min) substantially reduced the populations of L. monocytogenes in comparison to the counts recovered from the boards immersed in deionized water. E. coli O157:H7 and L. monocytogenes were not detected in electrolyzed oxidizing water after soaking treatment, whereas the pathogens survived in the deionized water used for soaking the cutting boards. This study revealed that immersion of kitchen cutting boards in electrolyzed oxidizing water could be used as an effective method for inactivating foodborne pathogens on smooth, plastic cutting boards.


2011 ◽  
Vol 74 (12) ◽  
pp. 2162-2168 ◽  
Author(s):  
S. HERZALLAH ◽  
M. LARA LLEDÓ ◽  
R. HOLLEY

The glucosinolate sinigrin (SNG) is converted by endogenous plant myrosinase or by bacterial myrosinase-like activity to form the potent antimicrobial allyl isothiocyanate. In order to use SNG as a natural antimicrobial precursor in food, it became important to better understand the ability of bacteria to synthesize the enzyme(s) and understand factors influencing this synthesis at a constant SNG concentration. Eight spoilage, pathogenic, or starter culture bacteria were grown separately in medium containing individual or combined salts with SNG. SNG degradation by the bacteria and the formation of its major degradation product, allyl isothiocyanate, were followed for 12 days at 30 or 35°C. The bacterial strains varied in their ability to metabolize SNG, and this was enhanced by NaCl and/or NaNO3. SNG hydrolysis took place after 4 days, and the greatest amount occurred by day 12. At 12 days, Escherichia coli O157:H7 showed the greatest capacity to hydrolyze SNG (45.3% degradation), followed by Staphylococcus carnosus (44.57%), while Pseudomonas fluorescens was not active against SNG. The ability of tested strains to metabolize SNG, in decreasing order, was as follows: Escherichia coli O157:H7 > Staphylococcus carnosus > Staphylococcus aureus > Pediococcus pentosaceus > Salmonella Typhimurium > Listeria monocytogenes > Enterococcus faecalis > Pseudomonas fluorescens.


2002 ◽  
Vol 65 (7) ◽  
pp. 1142-1145 ◽  
Author(s):  
T. KIM ◽  
J. L. SILVA ◽  
T. C. CHEN

Effects of intensity and processing time of 254 nm UV irradiation on Listeria monocytogenes, Escherichia coli O157: H7, and Salmonella Typhimurium were investigated. Intensities measured at 5.08, 10.1, 15.2, and 20.3 cm from the light source were 1,000, 500, 250, and 150 μW/cm2, respectively. Intensities of 250 or 500 μW/cm2 reduced all suspended pathogen cells in peptone water about 5 log cycles after 2 min and completely inactivated L. monocytogenes and E. coli O157:H7 after 3 min by reductions of 8.39 and 8.64 log cycles, respectively. Intensities of 250 or 500 μW/cm2 also reduced (P ≤ 0.05) the tested pathogens inoculated on stainless steel (SS) chips, and E. coli O157:H7 was completely destroyed at 500 μW/cm2 for 3 min. After UV treatment for 3 min at 500 μW/cm2, all selected pathogens on chicken meat with or without skin showed reduction ranges from 0.36 to 1.28 log cycles. Results demonstrated that UV irradiation could effectively decrease pathogens in peptone water and on SS but that it was less effective on chicken meat.


Sign in / Sign up

Export Citation Format

Share Document