scholarly journals The P1 Protein of Watermelon mosaic virus Compromises the Activity as RNA Silencing Suppressor of the P25 Protein of Cucurbit yellow stunting disorder virus

2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Luisa Domingo-Calap ◽  
Ornela Chase ◽  
Mariona Estapé ◽  
Ana Beatriz Moreno ◽  
Juan José López-Moya

Mixed viral infections in plants involving a potyvirus and other unrelated virus often result in synergistic effects, with significant increases in accumulation of the non-potyvirus partner, as in the case of melon plants infected by the potyvirus Watermelon mosaic virus (WMV) and the crinivirus Cucurbit yellow stunting disorder virus (CYSDV). To further explore the synergistic interaction between these two viruses, the activity of RNA silencing suppressors (RSSs) was addressed in transiently co-expressed combinations of heterologous viral products in Nicotiana benthamiana leaves. While the strong RSS activity of WMV Helper Component Proteinase (HCPro) was unaltered, including no evident additive effects observed when co-expressed with the weaker CYSDV P25, an unexpected negative effect of WMV P1 was found on the RSS activity of P25. Analysis of protein expression during the assays showed that the amount of P25 was not reduced when co-expressed with P1. The detrimental action of P1 on the activity of P25 was dose-dependent, and the subcellular localization of fluorescently labeled variants of P1 and P25 when transiently co-expressed showed coincidences both in nucleus and cytoplasm. Also, immunoprecipitation experiments showed interaction of tagged versions of the two proteins. This novel interaction, not previously described in other combinations of potyviruses and criniviruses, might play a role in modulating the complexities of the response to multiple viral infections in susceptible plants.

2021 ◽  
Author(s):  
Fakhreddine Houhou ◽  
Verónica Aragonés ◽  
Anamarija Butković ◽  
Cristina Sáez ◽  
Belén Picó ◽  
...  

Abstract As a response to viral infections, host plants trigger an RNA-mediated gene silencing defense, to which viruses respond with the expression of viral-encoded RNA silencing suppressors. If virus clones are manipulated to include sequences homologous to host endogenous genes, these are also targeted by the plant RNA silencing machinery. This so-called virus-induced gene silencing (VIGS) has become a powerful technique for reverse genetic analyses in plants, as an alternative to labor-intensive genome transformation. We show that a mild isolate of Watermelon mosaic virus (WMV, genus Potyvirus) can be used as a VIGS vector for reverse genetic analyses in melon. Recombinant WMV clones —in which fragments of the melon Phytoene desaturase (PDS) mRNA were inserted in sense, antisense, and hairpin modalities— induced a distinctive phenotype and significant silencing of the endogenous gene. While the foreign fragments in sense and antisense orientations were stable in the viral progeny, the hairpin was quickly lost. Nevertheless, the hairpin construct triggered a maintained silencing effect comparable to those of the sense and antisense constructs. The suitability of WMV as a VIGS vector was further confirmed targeting melon Magnesium chelatase subunit I (CHLI). These results also support that, although potyviruses express a strong silencing suppressor that usually precludes VIGS, mild isolates of this kind of viruses can be used as VIGS vectors. Finally, to facilitate the use of this new tool by cucurbit geneticists, we describe plasmid pGWMV-VIGS that allows easy cloning fragments of the genes of interest in a single Gibson assembly reaction.


2014 ◽  
Vol 27 (9) ◽  
pp. 944-955 ◽  
Author(s):  
Yi-Jung Kung ◽  
Pin-Chun Lin ◽  
Shyi-Dong Yeh ◽  
Syuan-Fei Hong ◽  
Nam-Hai Chua ◽  
...  

Cross-protection triggered by a mild strain of virus acts as a prophylaxis to prevent subsequent infections by related viruses in plants; however, the underling mechanisms are not fully understood. Through mutagenesis, we isolated a mutant strain of Turnip mosaic virus (TuMV), named Tu-GK, that contains an Arg182Lys substitution in helper component-proteinase (HC-ProK) that confers complete cross-protection against infection by a severe strain of TuMV in Nicotiana benthamiana, Arabidopsis thaliana Col-0, and the Arabidopsis dcl2-4/dcl4-1 double mutant defective in DICER-like ribonuclease (DCL)2/DCL4-mediated silencing. Our analyses showed that HC-ProK loses the ability to interfere with microRNA pathways, although it retains a partial capability for RNA silencing suppression triggered by DCL. We further showed that Tu-GK infection triggers strong salicylic acid (SA)-dependent and SA-independent innate immunity responses. Our data suggest that DCL2/4-dependent and –independent RNA silencing pathways are involved, and may crosstalk with basal innate immunity pathways, in host defense and in cross-protection.


2011 ◽  
Vol 1 (1) ◽  
Author(s):  
Heiko Ziebell ◽  
Alex M. Murphy ◽  
Simon C. Groen ◽  
Trisna Tungadi ◽  
Jack H. Westwood ◽  
...  

Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 324-328 ◽  
Author(s):  
F. Fukumoto ◽  
Y. Masuda ◽  
K. Hanada

Necrotic diseases of the stems, petioles, and leaves of pea plants (Pisum sativumL.), leading to wilting and death, occur in the Wakayama and Mie Prefectures of Japan. Based on host range, symptomatology, electron microscopy, and serological relationships, Watermelon mosaic virus (WMV) and three Cucumber mosaic virus (CMV) isolates (PE2, PE3A, and PB1) were isolated from diseased plants in the Wakayama Prefecture. In the Mie Prefecture, CMV (PEAN) also was isolated from pea plants with similar symptoms. Single infection with CMV (PB1 or PEAN) caused stem necrosis and eventual death of pea plants. Similar symptoms developed after double infection with WMV and PE2 or PE3A, whereas single infection with PE2 and PE3A induced symptomless infection in pea plants. We concluded either CMV alone or synergistic effects of mixed infection with CMV and WMV induced pea plant stem necrosis.


2007 ◽  
Vol 88 (10) ◽  
pp. 2862-2871 ◽  
Author(s):  
Heiko Ziebell ◽  
Tina Payne ◽  
James O. Berry ◽  
John A. Walsh ◽  
John P. Carr

Several plant virus mutants, in which genes encoding silencing suppressor proteins have been deleted, are known to induce systemic or localized RNA silencing against themselves and other RNA molecules containing homologous sequences. Thus, it is thought that many cases of cross-protection, in which infection with a mild or asymptomatic virus mutant protects plants against challenge infection with closely related virulent viruses, can be explained by RNA silencing. We found that a cucumber mosaic virus (CMV) mutant of the subgroup IA strain Fny (Fny-CMVΔ2b), which cannot express the 2b silencing suppressor protein, cross-protects tobacco (Nicotiana tabacum) and Nicotiana benthamiana plants against disease induction by wild-type Fny-CMV. However, protection is most effective only if inoculation with Fny-CMVΔ2b and challenge inoculation with wild-type CMV occurs on the same leaf. Unexpectedly, Fny-CMVΔ2b also protected plants against infection with TC-CMV, a subgroup II strain that is not closely related to Fny-CMV. Additionally, in situ hybridization revealed that Fny-CMVΔ2b and Fny-CMV can co-exist in the same tissues but these tissues contain zones of Fny-CMVΔ2b-infected host cells from which Fny-CMV appears to be excluded. Taken together, it appears unlikely that cross-protection by Fny-CMVΔ2b occurs by induction of systemic RNA silencing against itself and homologous RNA sequences in wild-type CMV. It is more likely that protection occurs through either induction of very highly localized RNA silencing, or by competition between strains for host cells or resources.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 138
Author(s):  
Celia De Moya-Ruiz ◽  
Pilar Rabadán ◽  
Miguel Juárez ◽  
Pedro Gómez

Viral infections on cucurbit plants cause substantial quality and yield losses on their crops. The diseased plants can often be infected by multiple viruses, and their epidemiology may depend, in addition to the agro-ecological management practices, on the combination of these viral infections. Watermelon mosaic virus (WMV) is one of the most prevalent viruses in cucurbit crops, and Moroccan watermelon mosaic virus (MWMV) emerged as a related species that threatens these crops. The occurrence of WMV and MWMV was monitored in a total of 196 apical-leaf samples of watermelon and pumpkin plants that displayed mosaic symptoms. The samples were collected from 49 fields in three major cucurbit-producing areas in Spain (Castilla La-Mancha, Alicante, and Murcia) for three consecutive (2018–2020) seasons. A molecular hybridization dot-blot method revealed that WMV was mainly (53%) found in both cultivated plants, with an unadvertised occurrence of MWMV. To determine the extent of cultivated plant species and mixed infections on viral dynamics, two infectious cDNA clones were constructed from a WMV isolate (MeWM7), and an MWMV isolate (ZuM10). Based on the full-length genomes, both isolates were grouped phylogenetically with the Emergent and European clades, respectively. Five-cucurbit plant species were infected steadily with either WMV or MWMV cDNA clones, showing variations on symptom expressions. Furthermore, the viral load varied depending on the plant species and infection type. In single infections, the WMV isolate showed a higher viral load than the MWMV isolate in melon and pumpkin, and MWMV only showed higher viral load than the WMV isolate in zucchini plants. However, in mixed infections, the viral load of the WMV isolate was greater than MWMV isolate in melon, watermelon and zucchini, whereas MWMV isolate was markedly reduced in zucchini. These results suggest that the impaired distribution of MWMV in cucurbit crops may be due to the cultivated plant species, in addition to the high prevalence of WMV.


Virus Genes ◽  
2010 ◽  
Vol 40 (3) ◽  
pp. 440-446 ◽  
Author(s):  
Noriho Fukuzawa ◽  
Noriko Itchoda ◽  
Takeaki Ishihara ◽  
Kazunori Goto ◽  
Chikara Masuta ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Alejandro Flores-León ◽  
Santiago García-Martínez ◽  
Vicente González ◽  
Ana Garcés-Claver ◽  
Raúl Martí ◽  
...  

The performance of snake melon [Cucumis melo var. flexuosus (L.)] in organic farming was studied under high biotic and salt stress conditions. Soilborne diseases (mainly caused by Macrophomina phaseolina and Neocosmospora falciformis), combined with virus incidence [Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and Tomato leaf curl New Delhi virus (ToLCNDV)] and Podosphaera xanthii attacks, reduced yield by more than 50%. Snake melon susceptibility to M. phaseolina and Monosporascus cannonballus was proved in pathogenicity tests, while it showed some degree of resistance to Neocosmospora keratoplastica and N. falciformis. On the contrary, salt stress had a minor impact, although a synergic effect was detected: yield losses caused by biotic stress increased dramatically when combined with salt stress. Under biotic stress, grafting onto the melon F1Pat81 and wild Cucumis rootstocks consistently reduced plant mortality in different agroecological conditions, with a better performance compared to classic Cucurbita commercial hybrids. Yield was even improved under saline conditions in grafted plants. A negative effect was detected, though, on consumer acceptability, especially with the use of Cucurbita rootstocks. Cucumis F1Pat81 rootstock minimized this side effect, which was probably related to changes in the profile of sugars, acids, and volatiles. Grafting affected sugars and organic acid contents, with this effect being more accentuated with the use of Cucurbita rootstocks than with Cucumis. In fact, the latter had a higher impact on the volatile organic compound profile than on sugar and acid profile, which may have resulted in a lower effect on consumer perception. The use of Cucumis rootstocks seems to be a strategy to enable organic farming production of snake melon targeted to high-quality markets in order to promote the cultivation of this neglected crop.


Sign in / Sign up

Export Citation Format

Share Document