scholarly journals Cloning, Heterologous Expression, and Characterization of a βκ-Carrageenase From Marine Bacterium Wenyingzhuangia funcanilytica: A Specific Enzyme for the Hybrid Carrageenan–Furcellaran

2021 ◽  
Vol 12 ◽  
Author(s):  
Siqi Cao ◽  
Yuying Zhang ◽  
Guangning Chen ◽  
Jingjing Shen ◽  
Jin Han ◽  
...  

Carrageenan is a group of important food polysaccharides with high structural heterogeneity. Furcellaran is a typical hybrid carrageenan, which contains the structure consisted of alternative β-carrageenan and κ-carrageenan motifs. Although several furcellaran-hydrolyzing enzymes have been characterized, their specificity for the glycosidic linkage was still unclear. In this study, we cloned, expressed, and characterized a novel GH16_13 furcellaran-hydrolyzing enzyme Cgbk16A_Wf from the marine bacterium Wenyingzhuangia fucanilytica CZ1127. Cgbk16A_Wf exhibited its maximum activity at 50°C and pH 6.0 and showed high thermal stability. The oligosaccharides in enzymatic products were identified by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that Cgbk16A_Wf specifically cleaves the β-1,4 linkages between β-carrageenan and κ-carrageenan motifs from non-reducing end to reducing end. Considering the structural heterogeneity of carrageenan and for the unambiguous indication of the specificity, we recommended to name the furcellaran-hydrolyzing activity represented by Cgbk16A as “βκ-carrageenase” instead of “furcellaranase”.

1980 ◽  
Vol 187 (1) ◽  
pp. 205-211 ◽  
Author(s):  
D G Baden ◽  
M D Corbett

The isolation and purification of bromoperoxidases from three marine subtropical green algae is described. In the presence of KBr and H2O2, each halide-specific enzyme catalyses the bromination of monochlorodimedone (2-chloro-5,5-dimethylcyclohexane-1,3-dione) to bromochlorodimedone (2-bromo-2-chloro-5,5-dimethylcyclohexane-1,3-dione). The enzymes also catalyse the oxidation of pyrogallol, o-phenylenediamine and I- to I3-. Preliminary characterization of these enzymes reveals acidic pH optima, high thermal stability, sensitivity to higher H2O2 concentrations, and apparent molecular weights ranging from 48000 to 60000.


Marine Drugs ◽  
2020 ◽  
Vol 18 (5) ◽  
pp. 245
Author(s):  
Jianlong He ◽  
Le Liu ◽  
Xiaoyan Liu ◽  
Kai Tang

We cloned a xylanase gene (xynT) from marine bacterium Echinicola rosea sp. nov. JL3085T and recombinantly expressed it in Escherichia coli BL21. This gene encoded a polypeptide with 379 amino acid residues and a molecular weight of ~43 kDa. Its amino acid sequence shared 45.3% similarity with an endoxylanase from Cellvibrio mixtus that belongs to glycoside hydrolases family 10 (GH10). The XynT showed maximum activity at 40 °C and pH 7.0, and a maximum velocity of 62 μmoL min−1 mg−1. The XynT retained its maximum activity by more than 69%, 51%, and 26% at 10 °C, 5 °C, and 0 °C, respectively. It also exhibited the highest activity of 135% in the presence of 4 M NaCl and retained 76% of its activity after 24 h incubation with 4 M NaCl. This novel xylanase, XynT, is a cold-active and halotolerant enzyme that may have promising applications in drug, food, feed, and bioremediation industries.


2021 ◽  
Author(s):  
Natael M. Wayllace ◽  
Nicolas Hedín ◽  
María V. Busi ◽  
Diego F. Gomez-Casati

ABSTRACTWe investigated the structural and functional properties of SdGA, a glucoamylase (GA) from Saccharophagus degradans, a marine bacterium which degrades different complex polysaccharides at high rate. SdGA is composed mainly by a N-terminal GH15_N domain linked to a C-terminal catalytic domain (CD) found in the GH15 family of glycosylhydrolases with an overall structure similar to other bacterial GAs. The protein was expressed in Escherichia coli cells, purified and its biochemical properties were investigated. Although SdGA has a maximum activity at 39°C and pH 6.0, it also shows high activity in a wide range, from low to mild temperatures, like cold-adapted enzymes. Furthermore, SdGA has a higher content of flexible residues and a larger CD due to various amino acid insertions compared to other thermostable GAs. We propose that this novel SdGA, is a cold-adapted enzyme that might be suitable for use in different industrial processes that require enzymes which act at low or medium temperatures.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3915 ◽  
Author(s):  
Yue Yang ◽  
Zhou Zheng ◽  
Yifei Xiao ◽  
Jiaojiao Zhang ◽  
Yu Zhou ◽  
...  

Chitosanase plays an important role in the production of chitooligosaccharides (CHOS), which possess various biological activities. Herein, a glycoside hydrolase (GH) family 46 chitosanase-encoding gene, csnB, was cloned from marine bacterium Bacillus sp. BY01 and heterologously expressed in Escherichia coli. The recombinant chitosanase, CsnB, was optimally active at 35 °C and pH 5.0. It was also revealed to be a cold-adapted enzyme, maintaining 39.5% and 40.4% of its maximum activity at 0 and 10 °C, respectively. Meanwhile, CsnB showed wide pH-stability within the range of pH 3.0 to 7.0. Then, an improved reaction condition was built to enhance its thermostability with a final glycerol volume concentration of 20%. Moreover, CsnB was determined to be an endo-type chitosanase, yielding chitosan disaccharides and trisaccharides as the main products. Overall, CsnB provides a new choice for enzymatic CHOS production.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 596
Author(s):  
Lin-Lin Zhang ◽  
Xiao-Hua Jiang ◽  
Xin-Feng Xiao ◽  
Wen-Xiu Zhang ◽  
Yi-Qian Shi ◽  
...  

(1) Background: Chitooligosaccharides (COS) have numerous applications due to their excellent properties. Chitosan hydrolysis using chitosanases has been proposed as an advisable method for COS preparation. Although many chitosanases from various sources have been identified, the cold-adapted ones with high stability are still rather rare but required. (2) Methods: A novel chitosanase named CsnY from marine bacterium Renibacterium sp. Y82 was expressed in Escherichia coli, following sequence analysis. Then, the characterizations of recombinant CsnY purified through Ni–NTA affinity chromatography were conducted, including effects of pH and temperature, effects of metal ions and chemicals, and final product analysis. (3) Results: The GH46 family chitosanase CsnY possessed promising thermostability at broad temperature range (0–50 °C), and with optimal activity at 40 °C and pH 6.0, especially showing relatively high activity (over 80% of its maximum activity) at low temperatures (20–30 °C), which demonstrated the cold-adapted property. Common metal ions or chemicals had no obvious effect on CsnY except Mn2+ and Co2+. Finally, CsnY was determined to be an endo-type chitosanase generating chitodisaccharides and -trisaccharides as main products, whose total concentration reached 56.74 mM within 2 h against 2% (w/v) initial chitosan substrate. (4) Conclusions: The results suggest the cold-adapted CsnY with favorable stability has desirable potential for the industrial production of COS.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 399
Author(s):  
Juanjuan Su ◽  
Xiaoyi Wang ◽  
Chengying Yin ◽  
Yujiao Li ◽  
Hao Wu ◽  
...  

Chondroitinases, catalyzing the degradation of chondroitin sulfate (CS) into oligosaccharides, not only play a crucial role in understanding the structure and function of CS, but also have been reported as a potential candidate drug for the treatment of high CS-related diseases. Here, a marine bacterium Vibrio hyugaensis LWW-1 was isolated, and its genome was sequenced and annotated. A chondroitinase, VhChlABC, was found to belong to the second subfamily of polysaccharide lyase (PL) family 8. VhChlABC was recombinant expressed and characterized. It could specifically degrade CS-A, CS-B, and CS-C, and reached the maximum activity at pH 7.0 and 40 °C in the presence of 0.25 M NaCl. VhChlABC showed high stability within 8 h under 37 °C and within 2 h under 40 °C. VhChlABC was stable in a wide range of pH (5.0~10.6) at 4 °C. Unlike most chondroitinases, VhChlABC showed high surfactant tolerance, which might provide a good tool for removing extracellular CS proteoglycans (CSPGs) of lung cancer under the stress of pulmonary surfactant. VhChlABC completely degraded CS to disaccharide by the exolytic mode. This research expanded the research and application system of chondroitinases.


2021 ◽  
Vol 9 (4) ◽  
pp. 749
Author(s):  
Gülbahar Abaramak ◽  
Jaime Ricardo Porras-Domínguez ◽  
Henry Christopher Janse van Rensburg ◽  
Eveline Lescrinier ◽  
Ebru Toksoy Öner ◽  
...  

Fructans are fructose-based (poly)saccharides with inulin and levan being the best-known ones. Thanks to their health-related benefits, inulin-type fructans have been under the focus of scientific and industrial communities, though mostly represented by plant-based inulins, and rarely by microbial ones. Recently, it was discovered that some extremely halophilic Archaea are also able to synthesize fructans. Here, we describe the first in-depth functional and molecular characterization of an Archaeal inulosucrase from Halomicrobium sp. IBSBa (HmcIsc). The HmcIsc enzyme was recombinantly expressed and purified in Escherichia coli and shown to synthesize inulin as proven by nuclear magnetic resonance (NMR) analysis. In accordance with the halophilic lifestyle of its native host, the enzyme showed maximum activity at very high NaCl concentrations (3.5 M), with specific adaptations for that purpose. Phylogenetic analyses suggested that Archaeal inulosucrases have been acquired from halophilic bacilli through horizontal gene transfer, with a HX(H/F)T motif evolving further into a HXHT motif, together with a unique D residue creating the onset of a specific alternative acceptor binding groove. This work uncovers a novel area in fructan research, highlighting unexplored aspects of life in hypersaline habitats, and raising questions about the general physiological relevance of inulosucrases and their products in nature.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 418
Author(s):  
Paolo Morazzoni ◽  
Paola Vanzani ◽  
Sandro Santinello ◽  
Antonina Gucciardi ◽  
Lucio Zennaro ◽  
...  

A “green” solvent-free industrial process (patent pending) is here described for a grape seed extract (GSE) preparation (Ecovitis™) obtained from selected seeds of Veneto region wineries, in the northeast of Italy, by water and selective tangential flow filtration at different porosity. Since a comprehensive, non-ambiguous characterization of GSE is still a difficult task, we resorted to using an integrated combination of gel permeation chromatography (GPC) and electrospray ionization high resolution mass spectrometry (ESI-HRMS). By calibration of retention time and spectroscopic quantification of catechin as chromophore, we succeeded in quantifying GPC polymers up to traces at n = 30. The MS analysis carried out by the ESI-HRMS method by direct-infusion allows the detection of more than 70 species, at different polymerization and galloylation, up to n = 13. This sensitivity took advantage of the nanoscale shotgun approach, although paying the limit of missed separation of stereoisomers. GPC and MS approaches were remarkably well cross-validated by overlapping results. This simple integrated analytical approach has been used for quality control of the production of Ecovitis™. The emerging feature of Ecovitis™ vs. a popular benchmark in the market, produced by a different technology, is the much lower content of species at low n and the corresponding increase of species at high n.


Sign in / Sign up

Export Citation Format

Share Document