scholarly journals Structural and Catalytic Characterization of TsBGL, a β-Glucosidase From Thermofilum sp. ex4484_79

2021 ◽  
Vol 12 ◽  
Author(s):  
Anke Chen ◽  
Dan Wang ◽  
Rui Ji ◽  
Jixi Li ◽  
Shaohua Gu ◽  
...  

Beta-glucosidase is an enzyme that catalyzes the hydrolysis of the glycosidic bonds of cellobiose, resulting in the production of glucose, which is an important step for the effective utilization of cellulose. In the present study, a thermostable β-glucosidase was isolated and purified from the Thermoprotei Thermofilum sp. ex4484_79 and subjected to enzymatic and structural characterization. The purified β-glucosidase (TsBGL) exhibited maximum activity at 90°C and pH 5.0 and displayed maximum specific activity of 139.2μmol/min/mgzne against p-nitrophenyl β-D-glucopyranoside (pNPGlc) and 24.3μmol/min/mgzen against cellobiose. Furthermore, TsBGL exhibited a relatively high thermostability, retaining 84 and 47% of its activity after incubation at 85°C for 1.5h and 90°C for 1.5h, respectively. The crystal structure of TsBGL was resolved at a resolution of 2.14Å, which revealed a classical (α/β)8-barrel catalytic domain. A structural comparison of TsBGL with other homologous proteins revealed that its catalytic sites included Glu210 and Glu414. We provide the molecular structure of TsBGL and the possibility of improving its characteristics for potential applications in industries.

Author(s):  
Lilan Zhang ◽  
Puya Zhao ◽  
Chun-Chi Chen ◽  
Chun-Hsiang Huang ◽  
Tzu-Ping Ko ◽  
...  

β-1,3–1,4-Glucanases catalyze the specific hydrolysis of internal β-1,4-glycosidic bonds adjacent to the 3-O-substituted glucose residues in mixed-linked β-glucans. The thermophilic glycoside hydrolase CtGlu16A fromClostridium thermocellumexhibits superior thermal profiles, high specific activity and broad pH adaptability. Here, the catalytic domain of CtGlu16A was expressed inEscherichia coli, purified and crystallized in the trigonal space groupP3121, with unit-cell parametersa=b= 74.5,c= 182.9 Å, by the sitting-drop vapour-diffusion method and diffracted to 1.95 Å resolution. The crystal contains two protein molecules in an asymmetric unit. Further structural determination and refinement are in progress.


2010 ◽  
Vol 192 (18) ◽  
pp. 4776-4785 ◽  
Author(s):  
Rabeb Dhouib ◽  
Françoise Laval ◽  
Frédéric Carrière ◽  
Mamadou Daffé ◽  
Stéphane Canaan

ABSTRACT MSMEG_0220 from Mycobacterium smegmatis, the ortholog of the Rv0183 gene from M. tuberculosis, recently identified and characterized as encoding a monoacylglycerol lipase, was cloned and expressed in Escherichia coli. The recombinant protein (rMSMEG_0220), which exhibits 68% amino acid sequence identity with Rv0183, showed the same substrate specificity and similar patterns of pH-dependent activity and stability as the M. tuberculosis enzyme. rMSMEG_0220 was found to hydrolyze long-chain monoacylglycerol with a specific activity of 143 ± 6 U mg−1. Like Rv0183 in M. tuberculosis, MSMEG_0220 was found to be located in the cell wall. To assess the in vivo role of the homologous proteins, an MSMEG_0220 disrupted mutant of M. smegmatis (MsΔ0220) was produced. An intriguing change in the colony morphology and in the cell interaction, which were partly restored in the complemented mutant containing either an active (ComMsΔ0220) or an inactive (ComMsΔ0220S111A) enzyme, was observed. Growth studies performed in media supplemented with monoolein showed that the ability of both MsΔ0220 and ComMsΔ0220S111A to grow in the presence of this lipid was impaired. Moreover, studies of the antimicrobial susceptibility of the MsΔ0220 strain showed that this mutant is more sensitive to rifampin and more resistant to isoniazid than the wild-type strain, pointing to a critical structural role of this enzyme in mycobacterial physiology, in addition to its function in the hydrolysis of exogenous lipids.


2018 ◽  
pp. 52-58

Purificación Parcial y Caracterización de Alfa Amilasa de granos germinados de Chenopodium quinoa (Quinua) Partial Purification and Characterization of Alpha Amylase from germinated grains from Chenopopdium quinoa (Quinua) Melissa Bedón Gómez, Oscar Nolasco Cárdenas, Carlos Santa Cruz C. y Ana I. F. Gutiérrez Román Universidad Nacional Federico Villarreal, Facultad de Ciencias Naturales y Matemática, Laboratorio de Bioquímica y Biología Molecular, Jr. Río Chepén S/N, El Agustino. Telefax: 362 - 3388 DOI: https://doi.org/10.33017/RevECIPeru2013.0007/ Resumen Las alfa amilasas son las enzimas más estudiadas e importantes en el campo biotecnológico e industrial; ya que han reemplazado por completo la hidrólisis química del almidón. Estas enzimas son imprescindibles en la elaboración de productos alimenticios, combustibles, medicamentos y detergentes con la finalidad de optimizar procesos y conservar el medio ambiente. La α-amilasa puede ser purificada de diferentes organismos como plantas, animales, hongos y bacterias; actualmente un gran número de α-amilasas bacterianas en especial del género Bacillus están disponibles comercialmente y son las más utilizadas en las industrias. Sin embargo, la producción de éstas no satisfacen los requerimientos industriales en el mundo; ya que, la demanda de esta enzima se ha incrementado en los últimos dos años y el empleo de α-amilasas bacterianas ha provocado alergias afectando al 15% de la población a nivel mundial. . En este estudio, como fuente de α-amilasa se emplearon semillas de Chenopodium quinoa (quinua) var hualhuas blanca durante el proceso de germinación; esta enzima fue parcialmente purificada por precipitación con sulfato de amonio obteniendo una actividad específica final de 35.60U/mg y un grado de purificación de 5 veces. La purificación fue confirmada por SDS-PAGE, encontrando un peso molecular de 44kDa. La actividad enzimática se evaluó mediante el método de Miller mostrando máxima actividad a pH 7 y a temperatura de 37ºC. La linealización de Lineweaver-Burk nos dio un Km de 16mg/mL y Vmax de 100µM de maltosa/min. Por lo tanto, esta caracterización reúne los pre-requisitos necesarios para la aplicación en la industria. Descriptores: Chenopodium quinoa, alfa amilasa, germinación, purificación parcial. Abstract The alpha amylases are the enzymes most studied and important in biotechnology and industry; because they have completely replaced the starch’s chemical hydrolysis. These enzymes are essential in the food production, medicines and detergents in order to optimize processes and conserve the environment. The α-amylase can be isolated from different organisms such as plants, animals, fungi and bacteria, now a large number of bacterial α-amylases especially from genus Bacillus are commercially available and they are the most used in industry. However, the production of these do not meet industry requirements in the world, because the demand for this enzyme has increased in the last two years and the use of bacterial α-amilase has caused allergies affecting the 15% of the global population. In this study, as a source of α-amylase used the seeds from Chenopodium quinoa (quinoa). Var. white hualhuas during the germination process, this enzyme was partially purified by ammonium sulfate precipitation to obtain a final specific activity of 35.60U/mg, and a grade of purification of 5 times. The purification was confirmed by SDS-PAGE, where the molecular weight was 44kDa. The enzyme activity was evaluated by Miller method showing maximum activity at pH 7 and 37ºC. The Lineweaver-Burk linearization shows a Km of 16mg/mL and Vmax of 100μM the maltose / min. Therefore, these characterizations meet the prerequisites need for industry. Keywords: Chenopodium quinoa; alpha amylase; germination; partial purification


2017 ◽  
Vol 18 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Dzun Noraini Jimat ◽  
Intan Baizura Firda Mohamed ◽  
Azlin Suhaida Azmi ◽  
Parveen Jamal

A newly bacterial producing L-asparaginase was successful isolated from Sungai Klah Hot Spring, Perak, Malaysia and identified as Bacillus sp. It was the best L-asparaginase producer as compared to other isolates. Production of L-asparaginase from the microbial strain was carried out under liquid fermentation. The crude enzyme was then centrifuged and precipitated with ammonium sulfate before further purified with chromatographic method. The ion exchange chromatography HiTrap DEAE-Sepharose Fast Flow column followed by separation on Superose 12 gel filtration were used to obtain pure enzyme. The purified enzyme showed 10.11 U/mg of specific activity, 50.07% yield with 2.21 fold purification. The purified enzyme was found to be dimer in form, with a molecular weight of 65 kDa as estimated by SDS-PAGE. The maximum activity of the purified L-asparaginase was observed at pH 9 and temperature of 60°C.


1988 ◽  
Vol 250 (2) ◽  
pp. 453-458 ◽  
Author(s):  
H Sobek ◽  
H Görisch

A heat-stable esterase has been purified 1080-fold to electrophoretic homogeneity from Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium; 20% of the starting activity is recovered. The purified enzyme shows a specific activity of 158 units/mg, based on the hydrolysis of p-nitrophenyl acetate. The esterase hydrolyses short-chain p-nitrophenyl esters, aliphatic esters and triacylglycerols. It is strongly inhibited by paraoxon and phenylmethanesulphonyl fluoride, but only weakly by eserine. From sedimentation-equilibrium data and molecular sieving in polyacrylamide gels, the Mr of the esterase is estimated to be 117000-128000. SDS/polyacrylamide-gel electrophoresis reveals a single band of protein, of Mr 32000. The purified esterase crystallizes in the presence of poly(ethylene glycol) in short rods. The enzyme is inactivated only on prolonged storage at temperature above 90 degrees C.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 546
Author(s):  
Jie Pan ◽  
Ni-Na Wang ◽  
Xue-Jing Yin ◽  
Xiao-Ling Liang ◽  
Zhi-Peng Wang

Tannase plays a crucial role in many fields, such as the pharmaceutical industry, beverage processing, and brewing. Although many tannases derived from bacteria and fungi have been thoroughly studied, those with good pH stabilities are still less reported. In this work, a mangrove-derived yeast strain Rhodosporidium diobovatum Q95, capable of efficiently degrading tannin, was screened to induce tannase, which exhibited an activity of up to 26.4 U/mL after 48 h cultivation in the presence of 15 g/L tannic acid. The tannase coding gene TANRD was cloned and expressed in Yarrowia lipolytica. The activity of recombinant tannase (named TanRd) was as high as 27.3 U/mL. TanRd was purified by chromatography and analysed by SDS-PAGE, showing a molecular weight of 75.1 kDa. The specific activity of TanRd towards tannic acid was 676.4 U/mg. Its highest activity was obtained at 40 °C, with more than 70% of the activity observed at 25–60 °C. Furthermore, it possessed at least 60% of the activity in a broad pH range of 2.5–6.5. Notably, TanRd was excellently stable at a pH range from 3.0 to 8.0; over 65% of its maximum activity remained after incubation. Besides, the broad substrate specificity of TanRd to esters of gallic acid has attracted wide attention. In view of the above, tannase resources were developed from mangrove-derived yeasts for the first time in this study. This tannase can become a promising material in tannin biodegradation and gallic acid production.


1989 ◽  
Vol 257 (4) ◽  
pp. G616-G623 ◽  
Author(s):  
H. A. Buller ◽  
A. G. Van Wassenaer ◽  
S. Raghavan ◽  
R. K. Montgomery ◽  
M. A. Sybicki ◽  
...  

Lactase-phlorizin hydrolase, a small intestinal disaccharidase, has been considered mainly an enzyme important only for the hydrolysis of lactose. After weaning in most mammals lactase-specific activity falls markedly, and, functionally, adult mammals are considered to be lactase deficient. However, the persistence of low levels of lactase activity in adulthood has never been explained. In addition, it has been suggested that lactase-phlorizin hydrolase is associated with glycosylceramidase activity when the enzyme is prepared by column chromatography, but it is unclear whether this represents copurified activities or two catalytic sites on one peptide. The developmental patterns of lactase-phlorizin hydrolase and other disaccharidases were investigated in homogenates of total rat small intestine; lactase and several glycosylceramidases were measured in immunoprecipitates from these homogenates using a monoclonal antibody. The developmental pattern of total lactase activity showed a steady 2.3-fold increase to adult levels (specific activity decreased eightfold), whereas total phlorizin-hydrolase activity increased 10.7-fold (specific activity decreased threefold). As expected, levels of both total and specific sucrase and maltase activities increased during development. In lactating rats total lactase activity showed a significant increase compared with adult males. The developmental pattern of the enzyme activities for the glycolipid substrates was similar to that found for lactase, and the immunoprecipitated enzyme showed a 40- to 55-fold higher affinity for the glycolipids than for lactose. Galactosyl- and lactosylceramide inhibited lactose hydrolysis by 38%, without a competitive pattern, suggesting two different active sites for lactose and glycolipid hydrolysis, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 37 (6) ◽  
pp. 363-370 ◽  
Author(s):  
Ye-Yun Li ◽  
Chang-Jun Jiang ◽  
Xiao-Chun Wan ◽  
Zheng-Zhu Zhang ◽  
Da-Xiang Li

Abstractβ-Glucosidases are important in the formation of floral tea aroma and the development of resistance to pathogens and herbivores in tea plants. A novel β-glucosidase was purified 117-fold to homogeneity, with a yield of 1.26%, from tea leaves by chilled acetone and ammonium sulfate precipitation, ion exchange chromatography (CM-Sephadex C-50) and fast protein liquid chromatography (FPLC; Superdex 75, Resource S). The enzyme was a monomeric protein with specific activity of 2.57 U/mg. The molecular mass of the enzyme was estimated to be about 41 kDa and 34 kDa by SDS-PAGE and FPLC gel filtration on Superdex 200, respectively. The enzyme showed optimum activity at 50 °C and was stable at temperatures lower than 40 °C. It was active between pH 4.0 and pH 7.0, with an optimum activity at pH 5.5, and was fairly stable from pH 4.5 to pH 8.0. The enzyme showed maximum activity towards pNPG, low activity towards pNP-Galacto, and no activity towards pNP-Xylo.


2005 ◽  
Vol 388 (2) ◽  
pp. 493-500 ◽  
Author(s):  
Chandra N. PATEL ◽  
David W. KOH ◽  
Myron K. JACOBSON ◽  
Marcos A. OLIVEIRA

PARG [poly(ADP-ribose) glycohydrolase] catalyses the hydrolysis of α(1″→2′) or α(1‴→2″) O-glycosidic linkages of ADP-ribose polymers to produce free ADP-ribose. We investigated possible mechanistic similarities between PARG and glycosidases, which also cleave O-glycosidic linkages. Glycosidases typically utilize two acidic residues for catalysis, thus we targeted acidic residues within a conserved region of bovine PARG that has been shown to contain an inhibitor-binding site. The targeted glutamate and aspartate residues were changed to asparagine in order to minimize structural alterations. Mutants were purified and assayed for catalytic activity, as well as binding, to an immobilized PARG inhibitor to determine ability to recognize substrate. Our investigation revealed residues essential for PARG catalytic activity. Two adjacent glutamic acid residues are found in the conserved sequence Gln755-Glu-Glu757, and a third residue found in the conserved sequence Val737-Asp-Phe-Ala-Asn741. Our functional characterization of PARG residues, along with recent identification of an inhibitor-binding residue Tyr796 and a glycine-rich region Gly745-Gly-Gly747 important for PARG function, allowed us to define a PARG ‘signature sequence’ [vDFA-X3-GGg-X6–8-vQEEIRF-X3-PE-X14-E-X12-YTGYa], which we used to identify putative PARG sequences across a range of organisms. Sequence alignments, along with our mapping of PARG functional residues, suggest the presence of a conserved catalytic domain of approx. 185 residues which spans residues 610–795 in bovine PARG.


1990 ◽  
Vol 269 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Y Homma ◽  
Y Emori ◽  
F Shibasaki ◽  
K Suzuki ◽  
T Takenawa

A novel bovine spleen phosphoinositide-specific phospholipase C (PLC) has been identified with respect to immunoreactivity with four independent antibodies against each of the PLC isoenzymes, and purified to near homogeneity by sequential column chromatography. Spleen contains three of the isoenzymes: two different gamma-types [gamma 1 and gamma 2, originally named as PLC-gamma [Rhee, Suh, Ryu & Lee (1989) Science 244, 546-550] and PLC-IV [Emori, Homma, Sorimachi, Kawasaki, Nakanishi, Suzuki & Takenawa (1989) J. Biol. Chem. 264, 21885-21890] respectively] and delta-type of the enzyme, but PLC-gamma 1 is separated from the PLC-gamma 2 pool by the first DEAE-cellulose column chromatography. Subsequently, PLC-delta is dissociated on the third heparin-Sepharose column chromatography. The purified enzyme has a molecular mass of 145 kDa on SDS/polyacrylamide-gel electrophoresis and a specific activity of 12.8 mumol/min per mg with phosphatidylinositol 4,5-bisphosphate as substrate. This enzyme activity is dependent on Ca2+ for hydrolysis of all these phosphoinositides. None of the other phospholipids examined could be its substrate at any concentration of Ca2+. The optimal pH of the enzyme is slightly acidic (pH 5.0-6.5).


Sign in / Sign up

Export Citation Format

Share Document