scholarly journals Comparison of Physicochemical Changes and Water Migration of Acinetobacter johnsonii, Shewanella putrefaciens, and Cocultures From Spoiled Bigeye Tuna (Thunnus obesus) During Cold Storage

2021 ◽  
Vol 12 ◽  
Author(s):  
Xin-Yun Wang ◽  
Jing Xie

This study investigates the physicochemical changes and water migration of Acinetobacter johnsonii (A), Shewanella putrefaciens (S), and cocultured A. johnsonii and S. putrefaciens (AS) inoculated into bigeye tuna during cold storage. The physicochemical indexes [fluorescence ratio (FR), total volatile base nitrogen (TVB-N), thiobarbituric acid (TBA), trimethylamine (TMA), peroxide value (POV), and pH] of bigeye tuna increased cold storage. A significant decrease in trapped water was found in the AS samples, and direct monitoring of the water dynamics was provided by low-field nuclear magnetic resonance. Samples inoculated with A. johnsonii and S. putrefaciens also induced the degradation of myofibrillar proteins and weakness of some Z-lines and M-lines. Higher values of physicochemical indexes and water dynamics were shown in the coculture of S. putrefaciens and A. johnsonii than in the other groups. Therefore, this paper reveals that the coculture of A. johnsonii and S. putrefaciens resulted in a bigeye tuna that was more easily spoiled when compared to the single culture. This study provides insight into the spoilage potential of A. johnsonii and S. putrefaciens during cold storage, which further assists in the application of appropriate technologies to keep the freshness of aquatic foods.

2020 ◽  
Vol 26 (6) ◽  
pp. 475-484
Author(s):  
Xin-Yun Wang ◽  
Jing Xie ◽  
Yun-Fang Qian

Bigeye tuna ( Thunnus obesus) is an important fish species worldwide due to its desirable flavour and rich nutrition. Cold chain logistics is one of the most common methods to store and sell bigeye tuna ( Thunnus obesus). The purpose of this study was to investigate how bigeye tuna ( T. obesus) deteriorate during simulated cold chain logistics with fluctuating temperatures by monitoring the quality changes and water distribution. The physical and chemical results showed that the sensory score, texture profile analysis (TPA), and water holding capacity (WHC) decreased, while total volatile basic nitrogen (TVB-N), K value, aerobic plate counts (APC), and psychrotrophic bacterial counts increased with fluctuating temperatures during 132 h. Low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) detection showed that the T21 (trapped water) and proton density decreased, while T22 (free water) decreased initially and then increased, indicating continuous water loss and water migration during storage. Principal component analysis (PCA) revealed that springiness, hardness, chewiness, T21, and sensory score were correlated with each other ( p < 0.05) and the linear combination of quality indicators and T2transverse relaxation time was established. Besides, temperature fluctuation (batch 3) accelerated the deterioration of bigeye tuna according to the comprehensive score of PCA. Results were based on LF-NMR which can be used to monitor quality changes in a fast non-invasive manner.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3119 ◽  
Author(s):  
Xin-Yun Wang ◽  
Jing Xie

Volatile organic compounds (VOCs) and water play a key role in evaluating the quality of aquatic products. Quality deterioration of aquatic products can produce some off-odour volatiles and can induce water content changes. However, no previous study has investigated a correlation between water dynamics and VOCs of bigeye tuna during cold storage. The changes in VOCs, water dynamics and quality attributes of bigeye tuna (Thunnus obesus) upon storage at 0 °C and 4 °C for 6 days were investigated. The results showed that the values of ATP, adenosine diphosphate (ADP), adenosine monophosphate (AMP), T21 (trapped water) and the relative value of T1 decreased (p < 0.05), while drip loss and histamine contents increased (p < 0.05), which indicated quality deterioration during cold storage. With haematoxylin and eosin (HE) staining, muscle tissue microstructure was observed. VOCs such as hexanal, heptanal, 4-Heptenal, (Z)-, pentadecanal-, 1-pentanol, 1-hexanol significantly increased, which sharply increased the content of off-odour volatiles. T21 was positively correlated with 1-octen-3-ol, 1-penten-3-ol, while T21 was negatively correlated with hexanal, 1-hexanol. Therefore, good correlations between water dynamics and some VOCs were detected during quality deterioration of bigeye tuna throughout cold storage.


Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 13
Author(s):  
Weicong Pan ◽  
Soottawat Benjakul ◽  
Chiara Sanmartin ◽  
Alessandra Guidi ◽  
Xiaoguo Ying ◽  
...  

To avoid heat, treatment induces numerous physicochemical changes under severe conditions in the tuna, cold plasma (CP), as a non-thermal technology, possess objective potential on tuna processing. The effect of cold plasma on the volatile flavor compounds of bigeye tuna (Thunnus obesus) sashimi has been evaluated using electronic nose (E-nose) and gas chromatography-ion mobility spectrometry (GC-IMS). GC–IMS results revealed a total of 33 volatile compounds in tuna slices. The effect of CP treatment on tuna flavor was not significant, furthermore CP could protect volatile freshness compounds such as 1-hexanol. Principal component analysis (PCA) of the E-nose and GC–IMS results could effectively differentiate the effect of storage to tuna sashimi. There was a high correlation between the E-nose and GC–IMS results, providing a theoretical basis for establishing the flavor fingerprint of tuna sashimi.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2132
Author(s):  
Zhengkai Yi ◽  
Jing Xie

Shewanella putrefaciens have a faster growth rate and strong spoilage potential at low temperatures for aquatic products. This study developed a nondestructive method for predicting the kinetic growth and spoilage of S. putrefaciens in bigeye tuna during cold storage at 4, 7 and 10 °C by electronic nose. According to the responses of electronic nose sensor P30/2, the fitted primary kinetic models (Gompertz and logistic models) and secondary model (square root function model) were able to better simulate the dynamic growth of S. putrefaciens, with high R2 and low RMSE values in the range of 0.96–0.99 and 0.021–0.061, respectively. A partial least squares (PLS) regression model based on both electronic nose sensor response values and electrical conductivity (EC) values predicted spoilage of S. putrefaciens in bigeye tuna more accurately than the PLS model based on sensor signal values only. In addition, SPME/GC-MS analysis suggested that 1-octen-3-ol, 2-nonanone, 2-heptanone, dimethyl disulfide and methylamine, N, N-dimethyl- are the key VOCs of tuna inoculated with S. putrefaciens.


Sign in / Sign up

Export Citation Format

Share Document