scholarly journals Characterization of the Flavor Profile of Bigeye Tuna Slices Treated by Cold Plasma Using E-Nose and GC-IMS

Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 13
Author(s):  
Weicong Pan ◽  
Soottawat Benjakul ◽  
Chiara Sanmartin ◽  
Alessandra Guidi ◽  
Xiaoguo Ying ◽  
...  

To avoid heat, treatment induces numerous physicochemical changes under severe conditions in the tuna, cold plasma (CP), as a non-thermal technology, possess objective potential on tuna processing. The effect of cold plasma on the volatile flavor compounds of bigeye tuna (Thunnus obesus) sashimi has been evaluated using electronic nose (E-nose) and gas chromatography-ion mobility spectrometry (GC-IMS). GC–IMS results revealed a total of 33 volatile compounds in tuna slices. The effect of CP treatment on tuna flavor was not significant, furthermore CP could protect volatile freshness compounds such as 1-hexanol. Principal component analysis (PCA) of the E-nose and GC–IMS results could effectively differentiate the effect of storage to tuna sashimi. There was a high correlation between the E-nose and GC–IMS results, providing a theoretical basis for establishing the flavor fingerprint of tuna sashimi.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Saad Ibrahim Yousif ◽  
Mustafa Bayram ◽  
Songul Kesen

Bulgur is enjoyed and rediscovered by many people as a stable food because of its color, flavor, aroma, texture, and nutritional and economical values. There is more than one type of bulgur overall the world according to production techniques and raw materials. The volatile compounds of bulgur have not been explored yet. In this study, Headspace Solid Phase Microextraction (HS-SPME) and Gas Chromatography–Mass Spectroscopy (GS-MS) methods were used to determine the volatile flavor compounds of bulgur (Antep type, produced from Durum wheat). Approaching studies were used and the results were optimized to determine the ideal conditions for the extraction and distinguish the compounds responsible for the flavor of bulgur. Approximately, 47 and 37 important volatile compounds were determined for Durum wheat and bulgur, respectively. The study showed that there was a great diversity of volatiles in bulgur produced using Durum wheat and Antep type production method. These can lead to a better understanding of the combination of compounds that give a unique flavor with more researches.


1996 ◽  
Vol 44 (12) ◽  
pp. 3909-3912 ◽  
Author(s):  
Mitsuya Shimoda ◽  
Hideki Shiratsuchi ◽  
Yuji Nakada ◽  
Yin Wu ◽  
Yutaka Osajima

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wengang Jin ◽  
Jinjin Pei ◽  
Xiaohua Chen ◽  
Jingzhang Geng ◽  
Dejing Chen ◽  
...  

Effects of deep fat frying and hot air frying on texture, color difference, sensory score, yield, fat content, and volatile flavor compounds of giant salamander meatballs before and after frying were investigated. The results showed that, compared with the deep fat frying group, hot air-fried giant salamander meatballs had higher hardness, elasticity, and L ∗ ( p < 0.05 ), but lower a ∗ , b ∗ value, fat content, and yield ( p < 0.05 ). There was little distinction in sensory score, cohesiveness, and chewiness between the two frying methods ( p > 0.05 ). Gas chromatography ion migration chromatography (GC-IMS) was used for flavor compound analysis, and 50 flavor compounds were analyzed, containing 22 aldehydes, 11 ketones, 6 olefins, 4 acids, 3 esters, 3 alcohols, and 1 phenol. Compared with the samples before frying, the relative contents of aldehydes and ketones of fried giant salamander meatballs increased significantly, while the relative contents of esters and alkenes decreased significantly. Principal component analysis showed that the GC-IMS spectra of volatile flavor compounds before and after deep fat frying and hot air frying varied greatly, and the cumulative contribution rate of the two principal components reached 86.1%, indicating that the GC-IMS technology might be used to distinguish giant salamander meatballs before and after frying, or with different frying methods. These results may offer a note for development and quality control of the precooked giant salamander meatballs in the future.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 460
Author(s):  
Carolin Schmidt ◽  
Doris Jaros ◽  
Harald Rohm

Chocolate has a complex flavor profile composed of more than 600 volatile compounds that mainly arise from the thermo-mechanical treatment during roasting and conching. The aim of this study was to evaluate the applicability of ion mobility spectrometry (IMS), as a real-time method for process monitoring in chocolate manufacture. It is evident from the ion mobility (IM) fingerprint spectra that individual processing steps affect the signal intensities at particular drift time regions. The analysis of individual IM spectra by principal component analysis (PCA) revealed that it is possible to distinguish with respect to conching temperature and time. PCA also allowed identifying those parts of the IM spectra that were predominantly affected by the respective treatment. It was, on the basis of the IM flavor fingerprints and subsequent PCA, possible to distinguish between the different states of processing of bulk cocoa. The results of the study imply that, using appropriate post-data treatment, IMS could be used for process control in cocoa processing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fengjie Yuan ◽  
Xujun Fu ◽  
Xiaomin Yu ◽  
Qinghua Yang ◽  
Hangxia Jin ◽  
...  

Evaluating the volatile compounds and characteristic fingerprints of the core cultivars of vegetable soybean would provide useful data for improving their aroma in the breeding programs. The present study used headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) to evaluate the volatile compounds of vegetable soybean seeds at a specific growth stage. In total, 93 signal peaks were identified, 63 compounds qualitatively, with 14 volatile flavor compounds providing multiple signals. The 63 volatile compounds consisted of 15 esters, 15 aldehydes, 13 alcohols, 15 ketones, one acid, and four other compounds. The peak intensity of most of the volatile compounds varied greatly between the core cultivars. The alcohols and aldehydes determined the basic volatile flavor of the vegetable soybean seeds. Volatile flavors were determined by their respective esters, ketones, or other components. Characteristic fingerprints were found in some core vegetable soybean cultivars. Four cultivars (Xiangdou, ZHE1754, Zhexian 65018-33, and Qvxian No. 1) had pleasant aromas, because of their higher content of 2-acetyl-1-pyrroline (2-AP). A principal component analysis (PCA) was used to distinguish the samples based on the signal intensity of their volatile components. The results showed that the composition and concentration of volatile compounds differed greatly between the core cultivars, with the volatile flavor compounds of soybeans being determined by the ecotype of the cultivar, the direction of breeding selection, and their geographical origin. Characteristic fingerprints of the cultivars were established by HS-GC-IMS, enabling them to be used to describe and distinguish cultivars and their offspring in future breeding studies.


2020 ◽  
Vol 32 (2) ◽  
pp. 139-144
Author(s):  
Tong Chen ◽  
Xingpu Qi ◽  
Mingjie Chen ◽  
Daoli Lu ◽  
Bin Chen

In this study, discrimination of Chinese yellow wines from Shaoxing, Shandong, and Hubei in China has been carried out according to volatile flavor components. A total of 122 yellow wine samples were characterized by gas chromatography–ion mobility spectrometry (GC–IMS). A simple color mixing method was visually used to select characteristic peaks based on the RGB color model. Then, the volatile organic compounds corresponding to the selected characteristic peaks were identified via library searching, and the height values of those peaks were arranged for further chemometric pretreatment. Principal component analysis was employed to reveal significant differences and potential patterns between samples. Finally, quadratic discriminant analysis was applied to develop a classification model and achieved a correct classified rate of 95.35% for the prediction set. The results prove that the aroma composition combined with chemometric tools can be used as a fingerprinting technique to protect the product of origin and enable the authenticity of Chinese yellow wine.


Sign in / Sign up

Export Citation Format

Share Document