scholarly journals The Temperature-Dependent Expression of the High-Pathogenicity Island Encoding Piscibactin in Vibrionaceae Results From the Combined Effect of the AraC-Like Transcriptional Activator PbtA and Regulatory Factors From the Recipient Genome

2021 ◽  
Vol 12 ◽  
Author(s):  
Marta A. Lages ◽  
Manuel L. Lemos ◽  
Miguel Balado

The high-pathogenicity island irp-HPI is widespread among Vibrionaceae encoding the piscibactin siderophore system. The expression of piscibactin genes in the fish pathogen Vibrio anguillarum is favored by low temperatures. However, information about the regulatory mechanism behind irp-HPI gene expression is scarce. In this work, in-frame deletion mutants of V. anguillarum defective in the putative regulators AraC1 and AraC2, encoded by irp-HPI, and in the global regulators H-NS and ToxRS, were constructed and their effect on irp-HPI gene expression was analyzed at 15 and 25°C. The results proved that only AraC1 (renamed as PbtA) is required for the expression of piscibactin biosynthesis and transport genes. PbtA inactivation led to an inability to grow under iron restriction, a loss of the outer membrane piscibactin transporter FrpA, and a significant decrease in virulence for fish. Inactivation of the global repressor H-NS, which is involved in silencing of horizontally acquired genes, also resulted in a lower transcriptional activity of the frpA promoter. Deletion of toxR-S, however, did not have a relevant effect on the expression of the irp-HPI genes. Therefore, while irp-HPI would not be part of the ToxR regulon, H-NS must exert an indirect effect on piscibactin gene expression. Thus, the temperature-dependent expression of the piscibactin-encoding pathogenicity island described in V. anguillarum is the result of the combined effect of the AraC-like transcriptional activator PbtA, harbored in the island, and other not yet defined regulator(s) encoded by the genome. Furthermore, different expression patterns were detected within different irp-HPI evolutionary lineages, which supports a long-term evolution of the irp-HPI genomic island within Vibrionaceae. The mechanism that modulates piscibactin gene expression could also be involved in global regulation of virulence factors in response to temperature changes.

2010 ◽  
Vol 192 (9) ◽  
pp. 2459-2462 ◽  
Author(s):  
Supreet Saini ◽  
Christopher V. Rao

ABSTRACT Salmonella pathogenicity island 1 (SPI1) and SPI4 have previously been shown to be jointly regulated. We report that SPI1 and SPI4 gene expression is linked through a transcriptional activator, SprB, encoded within SPI1 and regulated by HilA. SprB directly activates SPI4 gene expression and weakly represses SPI1 gene expression through HilD.


Pneumologie ◽  
2018 ◽  
Vol 72 (S 01) ◽  
pp. S8-S9
Author(s):  
M Bauer ◽  
H Kirsten ◽  
E Grunow ◽  
P Ahnert ◽  
M Kiehntopf ◽  
...  

Zuriat ◽  
2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Nono Carsono ◽  
Christian Bachem

Tuberization in potato is a complex developmental process resulting in the differentiation of stolon into the storage organ, tuber. During tuberization, change in gene expression has been known to occur. To study gene expression during tuberization over the time, in vitro tuberization system provides a suitable tool, due to its synchronous in tuber formation. An early six days axillary bud growing on tuber induction medium is a crucial development since a large number of genes change in their expression patterns during this period. In order to identify, isolate and sequencing the genes which displaying differential pattern between tuberizing and non-tuberizing potato explants during six days in vitro tuberization, cDNA-AFLP fingerprint, method for the visualization of gene expression using cDNA as template which is amplified to generate an RNA-fingerprinting, was used in this experiment. Seventeen primer combinations were chosen based on their expression profile from cDNA-AFLP fingerprint. Forty five TDFs (transcript derived fragment), which displayed differential expressions, were obtained. Tuberizing explants had much more TDFs, which developmentally regulated, than those from non tuberizing explants. Seven TDFs were isolated, cloned and then sequenced. One TDF did not find similarity in the current databases. The nucleotide sequence of TDF F showed best similarity to invertase ezymes from the databases. The homology of six TDFs with known sequences is discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document