scholarly journals Effect of Geography and Captivity on Scat Bacterial Communities in the Imperiled Channel Island Fox

2021 ◽  
Vol 12 ◽  
Author(s):  
Nicole E. Adams ◽  
Madeleine A. Becker ◽  
Suzanne Edmands

With developing understanding that host-associated microbiota play significant roles in individual health and fitness, taking an interdisciplinary approach combining microbiome research with conservation science is increasingly favored. Here we establish the scat microbiome of the imperiled Channel Island fox (Urocyon littoralis) and examine the effects of geography and captivity on the variation in bacterial communities. Using high throughput 16S rRNA gene amplicon sequencing, we discovered distinct bacterial communities in each island fox subspecies. Weight, timing of the sample collection, and sex contributed to the geographic patterns. We uncovered significant taxonomic differences and an overall decrease in bacterial diversity in captive versus wild foxes. Understanding the drivers of microbial variation in this system provides a valuable lens through which to evaluate the health and conservation of these genetically depauperate foxes. The island-specific bacterial community baselines established in this study can make monitoring island fox health easier and understanding the implications of inter-island translocation clearer. The decrease in bacterial diversity within captive foxes could lead to losses in the functional services normally provided by commensal microbes and suggests that zoos and captive breeding programs would benefit from maintaining microbial diversity.

2021 ◽  
Author(s):  
Nicole E Adams ◽  
Madeleine A Becker ◽  
Suzanne Edmands

Abstract Background With developing understanding that host-associated microbiota play significant roles in individual health and fitness, taking an interdisciplinary approach combining microbiome research with conservation science is increasingly favored. Here we establish the scat microbiome of the imperiled Channel Island fox (Urocyon littoralis) and look at the effects of geography and captivity on the variation in bacterial communities. Results Using high throughput 16S rRNA gene amplicon sequencing, we discovered distinct bacterial communities in each island fox subspecies. Weight, timing of the sample collection, and sex contributed to the geographic patterns. We uncovered significant taxonomic differences and an overall decrease in bacterial diversity in captive versus wild foxes. Conclusions Understanding the drivers of microbial variation in this system provides a valuable lens through which to evaluate the health and conservation of these genetically depauperate foxes. The island-specific bacterial community baselines established in this study can make monitoring island fox health easier and understanding the implications of inter-island translocation clearer. The decrease in bacterial diversity within captive foxes could lead to losses in the functional services normally provided by commensal microbes and suggests that zoos and captive breeding programs would benefit from maintaining microbial diversity.


2020 ◽  
Vol 7 (6) ◽  
pp. e896
Author(s):  
Alexandre Lecomte ◽  
Lucie Barateau ◽  
Pedro Pereira ◽  
Lars Paulin ◽  
Petri Auvinen ◽  
...  

ObjectiveTo test the hypothesis that narcolepsy type 1 (NT1) is related to the gut microbiota, we compared the microbiota bacterial communities of patients with NT1 and control subjects.MethodsThirty-five patients with NT1 (51.43% women, mean age 38.29 ± 19.98 years) and 41 controls (57.14% women, mean age 36.14 ± 12.68 years) were included. Stool samples were collected, and the fecal microbiota bacterial communities were compared between patients and controls using the well-standardized 16S rRNA gene amplicon sequencing approach. We studied alpha and beta diversity and differential abundance analysis between patients and controls, and between subgroups of patients with NT1.ResultsWe found no between-group differences for alpha diversity, but we discovered in NT1 a link with NT1 disease duration. We highlighted differences in the global bacterial community structure as assessed by beta diversity metrics even after adjustments for potential confounders as body mass index (BMI), often increased in NT1. Our results revealed differential abundance of several operational taxonomic units within Bacteroidetes, Bacteroides, and Flavonifractor between patients and controls, but not after adjusting for BMI.ConclusionWe provide evidence of gut microbial community structure alterations in NT1. However, further larger and longitudinal multiomics studies are required to replicate and elucidate the relationship between the gut microbiota, immunity dysregulation and NT1.


2017 ◽  
Vol 1 (3) ◽  
pp. 158-168 ◽  
Author(s):  
Kristi Gdanetz ◽  
Frances Trail

Manipulating plant-associated microbes to reduce disease or improve crop yields requires a thorough understanding of interactions within the phytobiome. Plants were sampled from a wheat/maize/soybean crop rotation site that implements four different crop management strategies. We analyzed the fungal and bacterial communities of leaves, stems, and roots of wheat throughout the growing season using 16S and fungal internal transcribed spacer 2 rRNA gene amplicon sequencing. The most prevalent operational taxonomic units (OTUs) were shared across all samples, although levels of the low-abundance OTUs varied. Endophytes were isolated from plants, and tested for antagonistic activity toward the wheat pathogen Fusarium graminearum. Antagonistic strains were assessed for plant protective activity in seedling assays. Our results suggest that microbial communities were strongly affected by plant organ and plant age, and may be influenced by management strategy.


2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Syrie M Hermans ◽  
Hannah L Buckley ◽  
Fiona Curran-Cournane ◽  
Matthew Taylor ◽  
Gavin Lear

ABSTRACT Investigating temporal variation in soil bacterial communities advances our fundamental understanding of the causal processes driving biological variation, and how the composition of these important ecosystem members may change into the future. Despite this, temporal variation in soil bacteria remains understudied, and the effects of spatial heterogeneity in bacterial communities on the detection of temporal changes is largely unknown. Using 16S rRNA gene amplicon sequencing, we evaluated temporal patterns in soil bacterial communities from indigenous forest and human-impacted sites sampled repeatedly over a 5-year period. Temporal variation appeared to be greater when fewer spatial samples per site were analysed, as well as in human-impacted compared to indigenous sites (P < 0.01 for both). The biggest portion of variation in bacterial community richness and composition was explained by soil physicochemical variables (13–24%) rather than spatial distance or sampling time (<1%). These results highlight the importance of adequate spatiotemporal replication when sampling soil communities for environmental monitoring, and the importance of conducting temporal research across a wide variety of land uses. This will ensure we have a true understanding of how bacterial communities change over space and time; the work presented here provides important considerations for how such research should be designed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kristi Biswas ◽  
Brett Wagner Mackenzie ◽  
Charlotte Ballauf ◽  
Julia Draf ◽  
Richard G. Douglas ◽  
...  

Abstract Olfactory impairment affects ~ 20% of the population and has been linked to various serious disorders. Microbes in the nasal cavity play a key role in priming the physiology of the olfactory epithelium and maintaining a normal sense of smell by the host. The aim of this study was to explore the link between olfactory dysfunction and nasal bacterial communities. A total of 162 subjects were recruited for this study from a specialized olfactory dysfunction clinic and placed into one of three groups: anosmia, hyposmia or normosmia. Swabs from the nasal middle meatus were collected from each subject then processed for bacterial 16S rRNA gene sequencing. No overall differences in bacterial diversity or composition were observed between the three cohorts in this study. However, the relative abundances of Corynebacterium spp. and Streptococcus spp. were significantly (p < 0.05) different in subjects with olfactory loss. Furthermore, subjects with deficiencies in discriminating between smells (based on discrimination scores) had a lower bacterial diversity (Simpson’s evenness p < 0.05). While these results are preliminary in nature, potential bacterial biomarkers for olfactory loss were identified. These findings need to be further validated and biologically tested in animal models.


Author(s):  
Lara Parata ◽  
Shaun Nielsen ◽  
Xing Xing ◽  
Torsten Thomas ◽  
Suhelen Egan ◽  
...  

Abstract Herbivorous fishes play important ecological roles in coral reefs by consuming algae that can otherwise outcompete corals, but we know little about the gut microbiota that facilitates this process. This study focussed on the gut microbiota of an ecologically important coral reef fish, the convict surgeonfish Acanthurus triostegus. We sought to understand how the microbiome of this species varies along its gastrointestinal tract and how it varies between juvenile and adult fish. Further, we examined if the bacteria associated with the diet consumed by juveniles contributes to the gut microbiota. 16S rRNA gene amplicon sequencing showed that bacterial communities associated with the midgut and hindgut regions were distinct between adults and juveniles, however, no significant differences were seen for gut wall samples. The microbiota associated with the epilithic algal food source was similar to that of the juvenile midgut and gut wall but differed from the microbiome of the hindgut. A core bacterial community including members of taxa Epulopiscium and Brevinemataceae was observed across all gastrointestinal and diet samples, suggesting that these bacterial symbionts can be acquired by juvenile convict surgeonfish horizontally via their diet and then are retained into adulthood.


2020 ◽  
Author(s):  
Ezequiel Santillan ◽  
Hari Seshan ◽  
Stefan Wuertz

AbstractDisturbance is thought to affect community assembly mechanisms, which in turn shape community structure and the overall function of the ecosystem. Here, we tested the effect of a continuous (press) xenobiotic disturbance on the function, structure, and assembly of bacterial communities within a wastewater treatment system. Two sets of four-liter sequencing batch reactors were operated in triplicate with and without the addition of 3-chloroaniline for a period of 132 days, following 58 days of acclimation after inoculation with sludge from a full-scale treatment plant. Temporal dynamics of bacterial community structure were derived from 16S rRNA gene amplicon sequencing. Community function, structure and assembly differed between press disturbed and undisturbed reactors. Temporal partitioning of assembly mechanisms via phylogenetic and non-phylogenetic null modelling analysis revealed that deterministic assembly prevailed for disturbed bioreactors, while the role of stochastic assembly was stronger for undisturbed reactors. Our findings are relevant because research spanning various disturbance types, environments and spatiotemporal scales is needed for a comprehensive understanding of the effects of press disturbances on assembly mechanisms, structure, and function of microbial communities.Graphical abstract


2019 ◽  
Author(s):  
Diptaraj Chaudhari ◽  
Krishnappa Rangappa ◽  
Anup Das ◽  
Jayanta Layek ◽  
Savita Basavaraju ◽  
...  

AbstractConservation agriculture offers a suitable system to harmonize agriculture with the environment, especially in fragile ecosystems of North-East India. Soil microbes play pivotal roles in ecosystem functioning and act as indispensable indicators of overall fitness of crop plant and soil health. Here we demonstrated that altercations in residue management and tillage practices lead to the development of differential bacterial communities forcing the pea plants to recruit special groups of bacteria leading to highly homogenous rhizosphere communities. Pea rhizosphere and bulk soil samples were collected, and bacterial community structure was estimated by 16S rRNA gene amplicon sequencing and predictive functional analysis was performed using Tax4Fun. The effect on pea plants was evident in the bacterial communities as the overall diversity of rhizosphere samples was significantly higher to that of bulk soil samples. Bacillus, Staphylococcus, Planomicrobium, Enterobacter, Arthrobacter, Nitrobacter, Geobacter, and Sphingomonas were noticed as the most abundant genera in the rhizosphere and bulk soil samples. The abundance of Firmicutes and Proteobacteria altered significantly in the rhizosphere and bulk samples, which was further validated by qPCR. Selection of specific taxa by pea plant was indicated by the higher values of mean proportion of Rhizobium, Pseudomonas, Pantoea, Nitrobacter, Enterobacter and Sphingomonas in rhizosphere samples, and Massilia, Paenibacillus and Planomicrobium in bulk soil samples. Tillage and residue management treatments did not significantly alter the bacterial diversity, while their influence was observed on the abundance of few genera. Recorded results revealed that pea plant selects specific taxa into its rhizosphere plausibly to meet its requirements for nutrient uptake and stress amelioration under the different tillage and residue management practices.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1184
Author(s):  
Wendy Marin-Gómez ◽  
Mᵃ José Grande ◽  
Rubén Pérez-Pulido ◽  
Antonio Galvez ◽  
Rosario Lucas

Breast milk from a single mother was collected during a 28-week lactation period. Bacterial diversity was studied by amplicon sequencing analysis of the V3-V4 variable region of the 16S rRNA gene. Firmicutes and Proteobacteria were the main phyla detected in the milk samples, followed by Actinobacteria and Bacteroidetes. The proportion of Firmicutes to Proteobacteria changed considerably depending on the sampling week. A total of 411 genera or higher taxons were detected in the set of samples. Genus Streptococcus was detected during the 28-week sampling period, at relative abundances between 2.0% and 68.8%, and it was the most abundant group in 14 of the samples. Carnobacterium and Lactobacillus had low relative abundances. At the genus level, bacterial diversity changed considerably at certain weeks within the studied period. The weeks or periods with lowest relative abundance of Streptococcus had more diverse bacterial compositions including genera belonging to Proteobacteria that were poorly represented in the rest of the samples.


Sign in / Sign up

Export Citation Format

Share Document