scholarly journals Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes

2021 ◽  
Vol 12 ◽  
Author(s):  
Simon Czolkoss ◽  
Xenia Safronov ◽  
Sascha Rexroth ◽  
Lisa R. Knoke ◽  
Meriyem Aktas ◽  
...  

Cell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to treatment with non-ionic detergents and can be purified as detergent-resistant membranes (DRMs). Here we report the proteome of DRMs from the Gram-negative phytopathogen Agrobacterium tumefaciens. Using label-free liquid chromatography-tandem mass spectrometry, we identified proteins enriched in DRMs isolated under normal and virulence-mimicking growth conditions. Prominent microdomain marker proteins such as the SPFH (stomatin/prohibitin/flotillin/HflKC) proteins HflK, HflC and Atu3772, along with the protease FtsH were highly enriched in DRMs isolated under any given condition. Moreover, proteins involved in cell envelope biogenesis, transport and secretion, as well as motility- and chemotaxis-associated proteins were overrepresented in DRMs. Most strikingly, we found virulence-associated proteins such as the VirA/VirG two-component system, and the membrane-spanning type IV and type VI secretion systems enriched in DRMs. Fluorescence microscopy of the cellular localization of both secretion systems and of marker proteins was in agreement with the results from the proteomics approach. These findings suggest that virulence traits are micro-compartmentalized into functional microdomains in A. tumefaciens.

2006 ◽  
Vol 74 (1) ◽  
pp. 108-117 ◽  
Author(s):  
Anna Carle ◽  
Christoph Höppner ◽  
Khaled Ahmed Aly ◽  
Qing Yuan ◽  
Amke den Dulk-Ras ◽  
...  

ABSTRACT Pathogenic Brucella species replicate within mammalian cells, and their type IV secretion system is essential for intracellular survival and replication. The options for biochemical studies on the Brucella secretion system are limited due to the rigidity of the cells and biosafety concerns, which preclude large-scale cell culture and fractionation. To overcome these problems, we heterologously expressed the Brucella suis virB operon in the closely related α2-proteobacterium Agrobacterium tumefaciens and showed that the VirB proteins assembled into a complex. Eight of the twelve VirB proteins were detected in the membranes of the heterologous host with specific antisera. Cross-linking indicated protein-protein interactions similar to those in other type IV secretion systems, and the results of immunofluorescence analysis supported the formation of VirB protein complexes in the cell envelope. Production of a subset of the B. suis VirB proteins (VirB3-VirB12) in A. tumefaciens strongly increased its ability to receive IncQ plasmid pLS1 in conjugation experiments, and production of VirB1 further enhanced the conjugation efficiency. Plasmid recipient competence correlated with periplasmic leakage and the detergent sensitivity of A. tumefaciens, suggesting a weakening of the cell envelope. Heterologous expression thus permits biochemical characterization of B. suis type IV secretion system assembly.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Stephanie Sibinelli de Sousa ◽  
Julia Takuno Hespanhol ◽  
Bruno Matsuyama ◽  
Stephane Mesnage ◽  
Gianlucca Nicastro ◽  
...  

Type VI secretion systems (T6SSs) are contractile nanomachines widely used by bacteria to intoxicate competitors. Salmonella Typhimurium encodes a T6SS within the Salmonella pathogenicity island 6 (SPI-6) that is used during competition against species of the gut microbiota. We characterized a new SPI-6 T6SS antibacterial effector named Tlde1 (type VI L,D-transpeptidase effector 1). Tlde1 is toxic in target-cell periplasm and its toxicity is neutralized by co-expression with immunity protein Tldi1 (type VI L,D-transpeptidase immunity 1). Time-lapse microscopy revealed that intoxicated cells display altered cell division and lose cell envelope integrity. Bioinformatics analysis showed that Tlde1 is evolutionarily related to L,D-transpeptidases. Point mutations on conserved histidine121 and cysteine131 residues eliminated toxicity. Co-incubation of purified recombinant Tlde1 and peptidoglycan tetrapeptides showed that Tlde1 displays both L,D-carboxypeptidase activity by cleaving GM-tetrapeptides between meso-diaminopimelic acid3 and D-alanine4, and L,D-transpeptidase exchange activity by replacing D-alanine4 for a non-canonical D-amino acid. Tlde1 constitutes a new family of T6SS effectors widespread in Proteobacteria. This work increases our knowledge about the bacterial effectors used in interbacterial competitions and provides molecular insight into a new mechanism of bacterial antagonism.


mBio ◽  
2011 ◽  
Vol 2 (6) ◽  
Author(s):  
Julieta Aguilar ◽  
Todd A. Cameron ◽  
John Zupan ◽  
Patricia Zambryski

ABSTRACTType IV secretion systems (T4SS) transfer DNA and/or proteins into recipient cells. Here we performed immunofluorescence deconvolution microscopy to localize the assembled T4SS by detection of its native components VirB1, VirB2, VirB4, VirB5, VirB7, VirB8, VirB9, VirB10, and VirB11 in the C58 nopaline strain ofAgrobacterium tumefaciens, following induction of virulence (vir) gene expression. These different proteins represent T4SS components spanning the inner membrane, periplasm, or outer membrane. Native VirB2, VirB5, VirB7, and VirB8 were also localized in theA. tumefaciensoctopine strain A348. Quantitative analyses of the localization of all the above Vir proteins in nopaline and octopine strains revealed multiple foci in single optical sections in over 80% and 70% of the bacterial cells, respectively. Green fluorescent protein (GFP)-VirB8 expression followingvirinduction was used to monitor bacterial binding to live host plant cells; bacteria bind predominantly along their lengths, with few bacteria binding via their poles or subpoles.vir-induced attachment-defective bacteria or bacteria without the Ti plasmid do not bind to plant cells. These data support a model where multiplevir-T4SS around the perimeter of the bacterium maximize effective contact with the host to facilitate efficient transfer of DNA and protein substrates.IMPORTANCETransfer of DNA and/or proteins to host cells through multiprotein type IV secretion system (T4SS) complexes that span the bacterial cell envelope is critical to bacterial pathogenesis. Early reports suggested that T4SS components localized at the cell poles. Now, higher-resolution deconvolution fluorescence microscopy reveals that all structural components of theAgrobacterium tumefaciens vir-T4SS, as well as its transported protein substrates, localize to multiple foci around the cell perimeter. These results lead to a new model ofA. tumefaciensattachment to a plant cell, whereA. tumefacienstakes advantage of the multiplevir-T4SS along its length to make intimate lateral contact with plant cells and thereby effectively transfer DNA and/or proteins through thevir-T4SS. The T4SS ofA. tumefaciensis among the best-studied T4SS, and the majority of its components are highly conserved in different pathogenic bacterial species. Thus, the results presented can be applied to a broad range of pathogens that utilize T4SS.


2009 ◽  
Vol 192 (1) ◽  
pp. 217-224 ◽  
Author(s):  
Rodrigo Sieira ◽  
Gastón M. Arocena ◽  
Lucas Bukata ◽  
Diego J. Comerci ◽  
Rodolfo A. Ugalde

ABSTRACT Type IV secretion systems (T4SS) are multicomponent machineries involved in the translocation of effector molecules across the bacterial cell envelope. The virB operon of Brucella abortus codes for a T4SS that is essential for virulence and intracellular multiplication of the bacterium in the host. Previous studies showed that the virB operon of B. abortus is tightly regulated within the host cells. In order to identify factors implicated in the control of virB expression, we searched for proteins of Brucella that directly bind to the virB promoter (P virB ). Using different procedures, we isolated a 27-kDa protein that binds specifically to P virB . This protein was identified as HutC, the transcriptional repressor of the histidine utilization (hut) genes. Analyses of virB and hut promoter activity revealed that HutC exerts two different roles: it acts as a coactivator of transcription of the virB operon, whereas it represses the hut genes. Such activities were observed both intracellularly and in bacteria incubated under conditions that resemble the intracellular environment. Electrophoresis mobility shift assays (EMSA) and DNase I footprinting experiments revealed the structure, affinity, and localization of the HutC-binding sites and supported the regulatory role of HutC in both hut and virB promoters. Taken together, these results indicate that Brucella coopted the function of HutC to coordinate the Hut pathway with transcriptional regulation of the virB genes, probably as a way to sense its own metabolic state and develop adaptive responses to overcome intracellular host defenses.


2019 ◽  
Vol 73 (1) ◽  
pp. 621-638 ◽  
Author(s):  
Jing Wang ◽  
Maj Brodmann ◽  
Marek Basler

Bacteria need to deliver large molecules out of the cytosol to the extracellular space or even across membranes of neighboring cells to influence their environment, prevent predation, defeat competitors, or communicate. A variety of protein-secretion systems have evolved to make this process highly regulated and efficient. The type VI secretion system (T6SS) is one of the largest dynamic assemblies in gram-negative bacteria and allows for delivery of toxins into both bacterial and eukaryotic cells. The recent progress in structural biology and live-cell imaging shows the T6SS as a long contractile sheath assembled around a rigid tube with associated toxins anchored to a cell envelope by a baseplate and membrane complex. Rapid sheath contraction releases a large amount of energy used to push the tube and toxins through the membranes of neighboring target cells. Because reach of the T6SS is limited, some bacteria dynamically regulate its subcellular localization to precisely aim at their targets and thus increase efficiency of toxin translocation.


2001 ◽  
Vol 183 (10) ◽  
pp. 3176-3183 ◽  
Author(s):  
Michaela Bayer ◽  
Robert Iberer ◽  
Karin Bischof ◽  
Edith Rassi ◽  
Edith Stabentheiner ◽  
...  

ABSTRACT Protein P19 encoded by the conjugative resistance plasmid R1 has been identified as being one member of a large family of muramidases encoded by bacteriophages and by type III and type IV secretion systems. We carried out a mutational analysis to investigate the function of protein P19 and used in vivo complementation assays to test those of several P19 mutants. The results indicated that conserved residues present in the presumed catalytic center of P19 are absolutely essential for its function in conjugation of plasmid R1 and infection by the RNA phage R17. Overexpression of protein P19 in an early growth phase resulted in a massive lysis of Escherichia coli cells in liquid culture, as indicated by a rapid and distinct decrease in cell culture densities after induction. Change of the proposed catalytic glutamate at position 44 to glutamine completely abolished this effect. P19-induced cell lysis was directly shown by transmission and scanning electron microscopy. Typically, P19-overexpressing cells showed bulges protruding from the cell surfaces. Our interpretation is that these protrusions arose from a localized and spatially confined disruption of the bacterial cell wall. To our knowledge such an effect has not previously been documented for any member of the lytic transglycosylase family. From the data presented here, we conclude that protein P19 possesses the proposed localized peptidoglycan-hydrolyzing activity. This activity would be a prerequisite for efficient penetration of the cell envelope by the DNA translocation complex encoded by the conjugative plasmid.


2012 ◽  
Vol 367 (1592) ◽  
pp. 1102-1111 ◽  
Author(s):  
Eric Cascales ◽  
Christian Cambillau

Type VI secretion systems (T6SSs) are transenvelope complexes specialized in the transport of proteins or domains directly into target cells. These systems are versatile as they can target either eukaryotic host cells and therefore modulate the bacteria–host interaction and pathogenesis or bacterial cells and therefore facilitate access to a specific niche. These molecular machines comprise at least 13 proteins. Although recent years have witnessed advances in the role and function of these secretion systems, little is known about how these complexes assemble in the cell envelope. Interestingly, the current information converges to the idea that T6SSs are composed of two subassemblies, one resembling the contractile bacteriophage tail, whereas the other subunits are embedded in the inner and outer membranes and anchor the bacteriophage-like structure to the cell envelope. In this review, we summarize recent structural information on individual T6SS components emphasizing the fact that T6SSs are composite systems, adapting subunits from various origins.


mBio ◽  
2021 ◽  
Author(s):  
Pratick Khara ◽  
Liqiang Song ◽  
Peter J. Christie ◽  
Bo Hu

Bacterial type IV secretion systems (T4SSs) play central roles in antibiotic resistance spread and virulence. By cryo-electron tomography (CryoET), we solved the structure of the plasmid pKM101-encoded T4SS in the native context of the bacterial cell envelope.


2015 ◽  
Vol 197 (14) ◽  
pp. 2335-2349 ◽  
Author(s):  
Neal Whitaker ◽  
Yuqing Chen ◽  
Simon J. Jakubowski ◽  
Mayukh K. Sarkar ◽  
Feng Li ◽  
...  

ABSTRACTBacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from theAgrobacterium tumefaciensVirD4 andEnterococcus faecalisPcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfCchimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominancein vivonor specifically bound cognate processing proteinsin vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs.IMPORTANCEFor conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are largely undefined. Here, we supply genetic and biochemical evidence that a helical bundle, designated the all-alpha domain (AAD), of T4SS receptors functions as a substrate specificity determinant. We show that AADs from two substrate receptors,Agrobacterium tumefaciensVirD4 andEnterococcus faecalisPcfC, bind DNA without sequence or strand preference but specifically bind the cognate relaxases responsible for nicking and piloting the transferred strand through the T4SS. We propose that interactions of receptor AADs with DNA-processing factors constitute a basis for selective coupling of mobile DNA elements with type IV secretion channels.


Sign in / Sign up

Export Citation Format

Share Document