scholarly journals Ancient Metabolisms of a Thermophilic Subseafloor Bacterium

2021 ◽  
Vol 12 ◽  
Author(s):  
Amy R. Smith ◽  
Ryan Mueller ◽  
Martin R. Fisk ◽  
Frederick S. Colwell

The ancient origins of metabolism may be rooted deep in oceanic crust, and these early metabolisms may have persisted in the habitable thermal anoxic aquifer where conditions remain similar to those when they first appeared. The Wood–Ljungdahl pathway for acetogenesis is a key early biosynthetic pathway with the potential to influence ocean chemistry and productivity, but its contemporary role in oceanic crust is not well established. Here, we describe the genome of a novel acetogen from a thermal suboceanic aquifer olivine biofilm in the basaltic crust of the Juan de Fuca Ridge (JdFR) whose genome suggests it may utilize an ancient chemosynthetic lifestyle. This organism encodes the genes for the complete canonical Wood–Ljungdahl pathway, but is potentially unable to use sulfate and certain organic carbon sources such as lipids and carbohydrates to supplement its energy requirements, unlike other known acetogens. Instead, this organism may use peptides and amino acids for energy or as organic carbon sources. Additionally, genes involved in surface adhesion, the import of metallic cations found in Fe-bearing minerals, and use of molecular hydrogen, a product of serpentinization reactions between water and olivine, are prevalent within the genome. These adaptations are likely a reflection of local environmental micro-niches, where cells are adapted to life in biofilms using ancient chemosynthetic metabolisms dependent on H2 and iron minerals. Since this organism is phylogenetically distinct from a related acetogenic group of Clostridiales, we propose it as a new species, Candidatus Acetocimmeria pyornia.

2009 ◽  
Vol 57 (2) ◽  
pp. 231-237
Author(s):  
M. Zych ◽  
A. Stolarczyk ◽  
K. Maca ◽  
A. Banaś ◽  
K. Termińska-Pabis ◽  
...  

Differences in the assimilation of individual organic compounds (5 mM sugars and L-asparagine) under mixotrophic growth conditions were described for three naturally occurring Haematococcus strains.The effects of assimilation were measured by the growth intensity and size of algal cells, and the effect of colour changes in the cultures was observed. Some compounds caused the cell colouration to change from green to yellow, being the result of chlorophyll disappearance and the accumulation of yellow secondary carotenoids. In the present experiment none of the cultures turned red, thus excluding the intense accumulation of the commercially interesting carotenoid, astaxanthin.


2017 ◽  
Vol 35 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Krista M. A. Paulson ◽  
Carol J. Ptacek ◽  
David W. Blowes ◽  
W. Douglas Gould ◽  
Jing Ma ◽  
...  

2014 ◽  
Vol 122 (2-3) ◽  
pp. 361-374 ◽  
Author(s):  
J. J. Dick ◽  
D. Tetzlaff ◽  
C. Birkel ◽  
C. Soulsby

2019 ◽  
Vol 15 (8-9) ◽  
pp. 513-522 ◽  
Author(s):  
Jianguo Du ◽  
Zehao Chen ◽  
Meiling Xie ◽  
Mingru Chen ◽  
Xinqing Zheng ◽  
...  

2000 ◽  
Vol 66 (10) ◽  
pp. 4518-4522 ◽  
Author(s):  
N. D. Gray ◽  
R. Howarth ◽  
R. W. Pickup ◽  
J. Gwyn Jones ◽  
I. M. Head

ABSTRACT Combined microautoradiography and fluorescence in situ hybridization (FISH) was used to investigate carbon metabolism in uncultured bacteria from the genus Achromatium. All of theAchromatium species identified in a freshwater sediment from Rydal Water, Cumbria, United Kingdom, which were distinguishable only by FISH, assimilated both [14C]bicarbonate and [14C]acetate. This extends previous findings thatAchromatium spp. present at another location could only utilize organic carbon sources. Achromatium spp., therefore, probably exhibit a range of physiologies, i.e., facultative chemolithoautotrophy, mixotrophy, and chemoorganoheterotrophy, similar to other large sulfur bacteria (e.g., Beggiatoa spp.).


3 Biotech ◽  
2016 ◽  
Vol 6 (2) ◽  
Author(s):  
Amit Kumar Sharma ◽  
Pradeepta Kumar Sahoo ◽  
Shailey Singhal ◽  
Alok Patel

Sign in / Sign up

Export Citation Format

Share Document