scholarly journals Corrigendum: Dietary Energy Level Promotes Rumen Microbial Protein Synthesis by Improving the Energy Productivity of the Ruminal Microbiome

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhongyan Lu ◽  
Zhihui Xu ◽  
Zanming Shen ◽  
Yuanchun Tian ◽  
Hong Shen
1995 ◽  
Vol 124 (3) ◽  
pp. 463-472 ◽  
Author(s):  
L. A. Sinclair ◽  
P. C. Garnsworthy ◽  
J. R. Newbold ◽  
P. J. Buttery

SUMMARYThe effects of synchronizing dietary energy and nitrogen supply in diets with a similar carbohydrate composition on microbial protein synthesis and rumen fermentation were examined in sheep. Two diets were formulated to be either synchronous (diet S) or asynchronous (diet A) for the hourly release of nitrogen (N) and energy to the rumen. Diet S contained (g/kg) 425 g wheat straw, 400 g winter barley, 150 grapeseed meal and 25 g minerals/vitamins and diet A contained 505 g wheat straw, 458.5 g winter barley, 11·5 g urea and 25 g minerals/vitamins. Both diets were fed at the rate of 1 kg/day in four equal portions, to four cannulated sheep, in two periods in a change-over design. Rumen ammonia concentrations followed the predicted hourly trend in N degradation with a peak 1 h after feeding of 10 mM for diet S and 16 mM for diet A before falling within 3 h of feeding to 4 ITIM in animals fed either diet. Rumen volatile fatty acid (VFA) concentrations followed the cyclical trend predicted by stoichiometric equations, whilst rumen VFA ratios were more stable than predicted in animals fed either diet. The observed content of rumen degradable protein and organic matter truly degraded in the rumen was similar for both diets. The increase in total CHO digested in the rumen observed with diet A (427 g/kg DM) compared with diet S (364 g/kg DM) can be attributed to the greater content of starch in the asynchronous diet, which had a high degradability. The efficiency of microbial protein synthesis (g N/kg OM truly degraded in the rumen) was 11–20% greater in animals fed the synchronous diet (S) than the asynchronous diet (A). It is concluded that microbial N production was more efficient when dietary energy and N supply were synchronized.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 395-395
Author(s):  
Paul Tamayao ◽  
Gabriel O Ribeiro ◽  
Tim A McAllister ◽  
Hee-Eun Yang ◽  
A M Saleem ◽  
...  

Abstract This study investigated the effects of post-pyrolysis treated biochar on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation and microbial protein synthesis in an artificial rumen system (RUSITEC) fed a barley silage-based diet. The basal diet consisted of 60% barley silage, 27% barley grain, 10% canola meal and 3% mineral/vitamin supplement (DM basis). Three spruced-based biochars, treated post-pyrolysis with either zinc chloride, hydrochloric acid/nitric acid mixture or sulfuric acid were added at 2.0% of substrate DM. In a randomized complete block design, treatments were assigned to sixteen vessels (n = 4/treatment) in two RUSITEC systems. The experiment was conducted over 15 d, with 8 d of adaptation and 7 d of sampling. Nutrient disappearance of dry matter (DM), organic matter (OM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) was determined after 48 h of incubation from d 9 to 12, and microbial protein synthesis was measured from d 13–15. Data were analyzed using PROC MIXED in SAS, with the fixed effect of treatment and random effect of RUSITEC system and vessel. Biochar inclusion did not affect disappearance of DM (P = 0.49), OM (P = 0.60), CP (P = 0.14), NDF (P = 0.48), ADF (P = 0.11) or starch (P = 0.58). Biochar also had no effect on total gas production (P = 0.31) or CH4 produced expressed as a % of total gas production (P = 0.06), mg/d (P = 0.70), mg/g of DM incubated (P = 0.74), or mg/g of DM digested (P = 0.64). No effect on total VFA (P = 0.56) or NH3-N (P = 0.20) production were observed. Neither microbial protein synthesis nor total protozoa count were affected by biochar addition (P > 0.05). In conclusion, biochar inclusion in a silage-based diet did not exhibit the potential to mitigate CH4 emissions or improve digestion in a RUSITEC system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Ran ◽  
Long Jin ◽  
Ranithri Abeynayake ◽  
Atef Mohamed Saleem ◽  
Xiumin Zhang ◽  
...  

Abstract Background Brewers’ spent grain (BSG) typically contains 20% – 29% crude protein (CP) with high concentrations of glutamine, proline and hydrophobic and non-polar amino acid, making it an ideal material for producing value-added products like bioactive peptides which have antioxidant properties. For this study, protein was extracted from BSG, hydrolyzed with 1% alcalase and flavourzyme, with the generated protein hydrolysates (AlcH and FlaH) showing antioxidant activities. This study evaluated the effects of AlcH and FlaH on gas production, ruminal fermentation characteristics, nutrient disappearance, microbial protein synthesis and microbial community using an artificial rumen system (RUSITEC) fed a high-grain diet. Results As compared to the control of grain only, supplementation of FlaH decreased (P < 0.01) disappearances of dry matter (DM), organic matter (OM), CP and starch, without affecting fibre disappearances; while AlcH had no effect on nutrient disappearance. Neither AlcH nor FlaH affected gas production or VFA profiles, however they increased (P < 0.01) NH3-N and decreased (P < 0.01) H2 production. Supplementation of FlaH decreased (P < 0.01) the percentage of CH4 in total gas and dissolved-CH4 (dCH4) in dissolved gas. Addition of monensin reduced (P < 0.01) disappearance of nutrients, improved fermentation efficiency and reduced CH4 and H2 emissions. Total microbial nitrogen production was decreased (P < 0.05) but the proportion of feed particle associated (FPA) bacteria was increased with FlaH and monensin supplementation. Numbers of OTUs and Shannon diversity indices of FPA microbial community were unaffected by AlcH and FlaH; whereas both indices were reduced (P < 0.05) by monensin. Taxonomic analysis revealed no effect of AlcH and FlaH on the relative abundance (RA) of bacteria at phylum level, whereas monensin reduced (P < 0.05) the RA of Firmicutes and Bacteroidetes and enhanced Proteobacteria. Supplementation of FlaH enhanced (P < 0.05) the RA of genus Prevotella, reduced Selenomonas, Shuttleworthia, Bifidobacterium and Dialister as compared to control; monensin reduced (P < 0.05) RA of genus Prevotella but enhaced Succinivibrio. Conclusions The supplementation of FlaH in high-grain diets may potentially protect CP and starch from ruminal degradation, without adversely affecting fibre degradation and VFA profiles. It also showed promising effects on reducing CH4 production by suppressing H2 production. Protein enzymatic hydrolysates from BSG using flavourzyme showed potential application to high value-added bio-products.


1998 ◽  
Vol 22 ◽  
pp. 306-308
Author(s):  
M. D. Carro ◽  
E. L. Miller

The estimation of rumen microbial protein synthesis is one of the main points in the nitrogen (N)-rationing systems for ruminants, as microbial protein provides proportionately 0.4 to 0.9 of amino acids entering the small intestine in ruminants receiving conventional diets (Russell et al., 1992). Methods of estimating microbial protein synthesis rely on marker techniques in which a particular microbial constituent is related to the microbial N content. Marker : N values have generally been established in mixed bacteria isolated from the liquid fraction of rumen digesta and it has been assumed that the same relationship holds in the total population leaving the rumen (Merry and McAllan, 1983). However, several studies have demonstrated differences in composition between solid-associated (SAB) and fluid-associated bacteria in vivo (Legay-Carmier and Bauchart, 1989) and in vitro (Molina Alcaide et al, 1996), as well in marker : N values (Pérez et al., 1996). This problem could be more pronounced in the in vitro semi-continuous culture system RUSITEC, in which there are three well defined components (a free liquid phase, a liquid phase associated with the solid phase and a solid phase), each one having associated microbial populations.The objective of this experiment was to investigate the effect of using different bacterial isolates (BI) on the estimation of microbial production of four different diets in RUSITEC (Czerkawski and Breckenridge, 1977), using (15NH4)2 SO4 as microbial marker, and to assess what effects any differences would have on the comparison of microbial protein synthesis between diets.This study was conducted in conjunction with an in vitro experiment described by Carro and Miller (1997). Two 14-day incubation trials were carried out with the rumen simulation technique RUSITEC (Czerkawski and Breckenridge, 1977). The general incubation procedure was the one described by Czerkawski and Breckenridge (1977) and more details about the procedures of this experiment are given elsewhere (Carro and Miller, 1997).


1975 ◽  
Vol 85 (1) ◽  
pp. 93-101 ◽  
Author(s):  
D. G. Harrison ◽  
D. E. Beever ◽  
D. J. Thomson ◽  
D. F. Osbourn

SUMMARYThe effects of an altered rumen dilution rate (D) upon the molar proportions of volatile fatty acids (VFA) in rumen liquor, VFA production rate, microbial protein synthesis and carbohydrate digestion within the rumen were studied using adult wether sheep.Dilution rate and VFA proportions were unaltered by the infusion of up to 121 water/day into the rumen of sheep fed dried grass and concentrate (9:1). There was a small but significant (P< 0·05) increase in the rumen volume when the infusion rate was increased from 8 to 12 1/day.The intraruminal infusion of artificial saliva (41/day), or artificial saliva containing 4% or 8% w/v polyethylene glycol (PEG) caused a significant increase in D with an associated decline in the molar proportion of propionate (Pr) in the rumen liquor. A similar effect was obtained with the intraruminal infusion of 2·5% w/v sodium bicarbonate. The overall regression of Pr on D was highly significant: Pr = 32·5–82·1D;r= –0·99, P < 0·001.A diet of flaked maize: dried grass (6:4) was offered to three sheep each fitted with a rumen cannula and with a re-entrant cannula at the proximal duodenum. The intraruminal infusion (4 1/day) of artificial saliva containing 4% w/v PEG caused a significant (P< 0·01) increase in D and a significant (P< 0·01) depression in Pr in two animals. The dilution rate and Pr in the third animal were virtually unaltered by infusion. The regression of Pr on D for the three animals was highly significant: Pr = 34·8–136·8D; r = –0·98, P < 0·001. Each increase in D was associated with an increased flow of α-linked glucose polymer, total amino acids and total microbial amino acids into the small intestine and with an increased efficiency of microbial protein synthesis within the rumen.


Sign in / Sign up

Export Citation Format

Share Document