scholarly journals PSXI-15 Effects of post-pyrolysis treated biochars on nutrient disappearance, methane production and ruminal fermentation of a silage-based diet in an artificial rumen system (RUSITEC)

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 395-395
Author(s):  
Paul Tamayao ◽  
Gabriel O Ribeiro ◽  
Tim A McAllister ◽  
Hee-Eun Yang ◽  
A M Saleem ◽  
...  

Abstract This study investigated the effects of post-pyrolysis treated biochar on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation and microbial protein synthesis in an artificial rumen system (RUSITEC) fed a barley silage-based diet. The basal diet consisted of 60% barley silage, 27% barley grain, 10% canola meal and 3% mineral/vitamin supplement (DM basis). Three spruced-based biochars, treated post-pyrolysis with either zinc chloride, hydrochloric acid/nitric acid mixture or sulfuric acid were added at 2.0% of substrate DM. In a randomized complete block design, treatments were assigned to sixteen vessels (n = 4/treatment) in two RUSITEC systems. The experiment was conducted over 15 d, with 8 d of adaptation and 7 d of sampling. Nutrient disappearance of dry matter (DM), organic matter (OM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) was determined after 48 h of incubation from d 9 to 12, and microbial protein synthesis was measured from d 13–15. Data were analyzed using PROC MIXED in SAS, with the fixed effect of treatment and random effect of RUSITEC system and vessel. Biochar inclusion did not affect disappearance of DM (P = 0.49), OM (P = 0.60), CP (P = 0.14), NDF (P = 0.48), ADF (P = 0.11) or starch (P = 0.58). Biochar also had no effect on total gas production (P = 0.31) or CH4 produced expressed as a % of total gas production (P = 0.06), mg/d (P = 0.70), mg/g of DM incubated (P = 0.74), or mg/g of DM digested (P = 0.64). No effect on total VFA (P = 0.56) or NH3-N (P = 0.20) production were observed. Neither microbial protein synthesis nor total protozoa count were affected by biochar addition (P > 0.05). In conclusion, biochar inclusion in a silage-based diet did not exhibit the potential to mitigate CH4 emissions or improve digestion in a RUSITEC system.

2021 ◽  
pp. 1-13
Author(s):  
Paul Tamayao ◽  
Gabriel O. Ribeiro ◽  
Tim A. McAllister ◽  
Kim H. Ominski ◽  
Atef M. Saleem ◽  
...  

This study investigated the effects of three pine-based biochar products on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation, microbial protein synthesis, and rumen microbiota in a rumen simulation technique (RUSITEC) fed a barley-silage-based total mixed ration (TMR). Treatments consisted of 10 g TMR supplemented with no biochar (control) and three different biochars (CP016, CP024, and CP028) included at 20 g·kg−1 DM. Treatments were assigned to 16 fermenters (n = 4 per treatment) in two RUSITEC units in a randomized block design for a 17 d experimental period. Data were analyzed using MIXED procedure in SAS, with treatment and day of sampling as fixed effects and RUSITEC unit and fermenters as random effects. Biochar did not affect nutrient disappearance (P > 0.05), nor total gas or CH4, irrespective of unit of expression. The volatile fatty acid, NH3-N, total protozoa, and microbial protein synthesis were not affected by biochar inclusion (P > 0.05). Alpha and beta diversity and rumen microbiota families were not affected by biochar inclusion (P > 0.05). In conclusion, biochar did not reduce CH4 emissions nor affect nutrient disappearance, rumen fermentation, microbial protein synthesis, or rumen microbiota in the RUSITEC.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 72-73
Author(s):  
Paul Tamayao ◽  
Tim A McAllister ◽  
Kim Ominski ◽  
Gabriel Ribeiro ◽  
Erasmus Okine ◽  
...  

Abstract This study investigated the effects of engineered biocarbon on nutrient digestibility, rumen fermentation, total gas and methane (CH4) emissions, and microbial protein synthesis in a rumen simulation technique (RUSITEC) fed a barley silage-based TMR. The basal diet consisted of 60% barley silage, 27% barley grain, 10% canola meal and 3% minerals. Three pine-based biocarbon products CP016, CP024 and CP028. were added at 2% of substrate DM. Biocarbons differed in bulk density, surface area, pore volume, pH, but had similar chemical compositions. Treatments were assigned to sixteen vessels (n = 4/treatment) in two RUSITEC apparatuses in a randomized block design. The experiment period was 17 d, with a 10-d adaptation and 7-d sample collection period. Data were analyzed using the PROC MIXED in SAS, with treatment (T), day (D) and TxD interactions as fixed effects and RUSITEC apparatus and fermenters as random effects. Compared to the control, biocarbon did not affect total gas (P = 0.98), the amount of CH4 produced per unit of DM incubated (P = 0.48) or per unit of DM digested (P = 0.27). Biocarbon treatments averaged 6.5 g of CH4 /g DM incubated and 9.06 g CH4 /g DM digested as compared to 7.1 g of CH4 /g DM incubated and 10.46 g CH4 / g DM digested in the control, respectively. Biocarbon CP024 had the greatest numerical reduction, followed by CP028 then CP016 in all CH4 associated parameters. Biocarbon addition did not affect the disappearance of DM (P = 0.63), OM (P = 0.34), CP (P = 0.48), NDF (P = 0.12), or VFA (P = 0.65) and ammonia N levels (P = 0.99) and protozoal counts (P = 0.72). The amount of bacterial nitrogen (mg/d) associated with feed particles increased (P < 0.003), suggesting that biocarbon may have enhanced colonization. In conclusion, engineered biocarbon did not reduce CH4 emissions in the RUSITEC.


2019 ◽  
Vol 97 (8) ◽  
pp. 3535-3549 ◽  
Author(s):  
Atef M Saleem ◽  
Gabriel O Ribeiro ◽  
Haley Sanderson ◽  
Daryoush Alipour ◽  
Tassilo Brand ◽  
...  

AbstractThis study investigated the effect of treatment of wheat straw using ammonia fiber expansion (AFEX) and exogenous fibrolytic enzymes (Viscozyme) on fiber digestibility, rumen fermentation, microbial protein synthesis, and microbial populations in an artificial rumen system [Rumen Simulation Technique (RUSITEC)]. Four treatments were assigned to 16 vessels (4 per treatment) in 2 RUSITEC apparatuses in a randomized block design. Treatments were arranged as a 2 × 2 factorial using untreated or AFEX-treated wheat straw with or without exogenous fibrolytic enzymes [0 or 500 μg of protein/g straw dry matter (DM)]. Fibrolytic enzymes were applied to straw, prior to sealing in nylon bags. The concentrate mixture was provided in a separate bag within each fermentation vessel. The RUSITECs were adapted for 8 d and disappearance of DM, neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude protein (CP) was measured after 48 h of incubation. Ammonia fiber expansion increased (P < 0.01) the disappearance of wheat straw DM (69.6 vs. 38.3%), NDF (65.6 vs. 36.8%), ADF (61.4 vs. 36.0%), and CP (68.3 vs. 24.0%). Total dietary DM, organic matter (OM), and NDF disappearance was also increased (P ≤ 0.05) by enzymes. Total microbial protein production was greater (P < 0.01) for AFEX-treated (72.9 mg/d) than untreated straw (63.1 mg/d). Total gas and methane (CH4) production (P < 0.01) were also greater for AFEX-treated wheat straw than untreated straw, with a tendency for total gas to increase (P = 0.06) with enzymes. Ammonia fiber expansion increased (P < 0.01) total volatile fatty acid (VFA) production and the molar proportion of propionate, while it decreased (P < 0.01) acetate and the acetate-to-propionate ratio. The AFEX-treated straw had lower relative quantities of fungi, methanogens, and Fibrobacter succinogenes (P < 0.01) and fewer protozoa (P < 0.01) compared to untreated straw. The pH of fermenters fed AFEX-treated straw was lower (P < 0.01) than those fed untreated straw. Both AFEX (P < 0.01) and enzymes (P = 0.02) decreased xylanase activity. There was an enzyme × straw interaction (P = 0.02) for endoglucanase activity. Enzymes increased endoglucanase activity of AFEX-treated wheat straw, but had no effect on untreated straw. The addition of enzymes lowered the relative abundance of Ruminococcus flavefaciens, but increased F. succinogenes. These results indicate that AFEX increased the ruminal disappearance of wheat straw and improved fermentation and microbial protein synthesis in the RUSITEC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Ran ◽  
Long Jin ◽  
Ranithri Abeynayake ◽  
Atef Mohamed Saleem ◽  
Xiumin Zhang ◽  
...  

Abstract Background Brewers’ spent grain (BSG) typically contains 20% – 29% crude protein (CP) with high concentrations of glutamine, proline and hydrophobic and non-polar amino acid, making it an ideal material for producing value-added products like bioactive peptides which have antioxidant properties. For this study, protein was extracted from BSG, hydrolyzed with 1% alcalase and flavourzyme, with the generated protein hydrolysates (AlcH and FlaH) showing antioxidant activities. This study evaluated the effects of AlcH and FlaH on gas production, ruminal fermentation characteristics, nutrient disappearance, microbial protein synthesis and microbial community using an artificial rumen system (RUSITEC) fed a high-grain diet. Results As compared to the control of grain only, supplementation of FlaH decreased (P < 0.01) disappearances of dry matter (DM), organic matter (OM), CP and starch, without affecting fibre disappearances; while AlcH had no effect on nutrient disappearance. Neither AlcH nor FlaH affected gas production or VFA profiles, however they increased (P < 0.01) NH3-N and decreased (P < 0.01) H2 production. Supplementation of FlaH decreased (P < 0.01) the percentage of CH4 in total gas and dissolved-CH4 (dCH4) in dissolved gas. Addition of monensin reduced (P < 0.01) disappearance of nutrients, improved fermentation efficiency and reduced CH4 and H2 emissions. Total microbial nitrogen production was decreased (P < 0.05) but the proportion of feed particle associated (FPA) bacteria was increased with FlaH and monensin supplementation. Numbers of OTUs and Shannon diversity indices of FPA microbial community were unaffected by AlcH and FlaH; whereas both indices were reduced (P < 0.05) by monensin. Taxonomic analysis revealed no effect of AlcH and FlaH on the relative abundance (RA) of bacteria at phylum level, whereas monensin reduced (P < 0.05) the RA of Firmicutes and Bacteroidetes and enhanced Proteobacteria. Supplementation of FlaH enhanced (P < 0.05) the RA of genus Prevotella, reduced Selenomonas, Shuttleworthia, Bifidobacterium and Dialister as compared to control; monensin reduced (P < 0.05) RA of genus Prevotella but enhaced Succinivibrio. Conclusions The supplementation of FlaH in high-grain diets may potentially protect CP and starch from ruminal degradation, without adversely affecting fibre degradation and VFA profiles. It also showed promising effects on reducing CH4 production by suppressing H2 production. Protein enzymatic hydrolysates from BSG using flavourzyme showed potential application to high value-added bio-products.


2010 ◽  
Vol 39 (5) ◽  
pp. 1141-1145 ◽  
Author(s):  
Alexandre Lima de Souza ◽  
Rasmo Garcia ◽  
Luciano da Silva Cabral ◽  
Mara Lúcia Albuquerque Pereira ◽  
Rilene Ferreira Diniz Valadares

It was evaluated nitrogen compounds and microbial protein synthesis in heifers fed diets containing coffee hulls (0.0; 8.75; 17.25; and 26.25% of dry matter) replacing ground corn concentrate at the following levels of coffee hulls in the total diet dry matter: 0.0, 3.5, 7.0 or 10.5%. It was used 24 crossbreed heifers (7/8, 15/16 and 31/32 Holstein-Zebu), which were distributed in a random block design made up accordingly to the weight of the animals. Spot samples of urine were colleted aproximatelly four hours after morning feeding and were used to estimate microbial protein synthesis by using urine purine derivatives. It was not observed effect of coffee hull levels in the diet on total nitrogen intake (160 g/day) and nitrogen excretion in the urine (87.4 g/day). The inclusion of coffee hull in the diet linearly increased nitrogen excretion in feces, as well as nitrogen balance. There was linear reduction in urinary excretion of allantoin, in total purine derivative and absorbed purine, which reduced 0.715, 0.873, and 0.954 mmol/day to each coffee hull unity added to the concentrate, respectively. Coffee hull altered microbial protein synthesis, which reduced in 0.687 g/day to each coffee hull unity added to the concentrate. Reduction in microbial protein synthesis can reduce weight gain in heifers fed coffee hulls.


2011 ◽  
Vol 11 (2) ◽  
pp. 29-34 ◽  
Author(s):  
Novita Hindratiningrum ◽  
Muhamad Bata ◽  
Setya Agus Santosa

Products of rumen fermentation and protein microbial of dairy cattle feed with rice bran ammonization and some feedstuffs as an energy sourcesABSTRACT. This study aims to examine the energy sources of feed ingredients that can increase the production of Volatile Fatty Acids (VFA), N-NH3, microbial protein synthesis, total gas production and metabolic energy. The material used is as a source of rumen fluid inoculum from Frisian Holstein cows (FH) females, amoniasi rice straw, salt, mineral mix brand "Ultra Minerals' production Eka Farma Semarang, onggok wet and dry, corn, and rice bran. Observed variable is the concentration of (VFA), N-NH3, rumen microbial protein synthesis, and total gas production. Based on the analysis of diversity seen any significant effect (P0.05) on total VFA concentration, N-NH3 and total gas but had no effect (P0.05) on microbial protein synthesis. Conclusion of research is the provision of energy sources with rice bran treatment, onggok wet and dry corn flour can be used as fermentable carbohydrates on feed hay amoniasi in vitro.


2020 ◽  
Vol 4 (2) ◽  
pp. 839-847
Author(s):  
Daryoush Alipour ◽  
Atef Mohamed Saleem ◽  
Haley Sanderson ◽  
Tassilo Brand ◽  
Laize V Santos ◽  
...  

Abstract This study evaluated the effect of combinations of feed-grade urea and slow-release urea (SRU) on fermentation and microbial protein synthesis within two artificial rumens (Rusitec) fed a finishing concentrate diet. The experiment was a completely randomized, dose–response design with SRU substituted at levels of 0% (control), 0.5%, 1%, or 1.75% of dry matter (DM) in place of feed-grade urea, with four replicate fermenters per dosage. The diet consisted of 90% concentrate and 10% forage (DM basis). The experiment was conducted over 15 d, with 8 d of adaptation and 7 d of sampling. Dry matter and organic matter disappearances were determined after 48 h of incubation from day 9 to 12, and daily ammonia (NH3) and volatile fatty acid (VFA) production were measured from day 9 to 12. Microbial protein synthesis was determined on days 13–15. Increasing the level of SRU quadratically affected total VFA (Q, P = 0.031) and ammonia (Q, P = 0.034), with a linear increment in acetate (L, P = 0.01) and isovalerate (L, P = 0.05) and reduction in butyrate (L, P = 0.05). Disappearance of neutral detergent fiber (NDF) and acid detergent fiber (ADF) was quadratically affected by levels of SRU, plateauing at 1% SRU. Inclusion of 1% SRU resulted in the highest amount of microbial nitrogen associated with feed particles (Q, P = 0.037). Responses in the efficiency of microbial protein synthesis fluctuated (L, P = 0.002; Q, P = 0.001) and were the highest for 1% SRU. In general, the result of this study showed that 1% SRU in combination with 0.6% urea increased NDF and ADF digestibility and total volatile fatty acid (TVFA) production.


2020 ◽  
Author(s):  
Tao Ran ◽  
Long Jin ◽  
Ranithri Abeynayake ◽  
Atef Moohanmed Saleem ◽  
Xiumin Zhang ◽  
...  

Abstract Background Brewers’ spent grain (BSG) typically contains 20 ~ 29% crude protein (CP) with high concentrations of glutamine, proline and hydrophobic and non-polar amino acid, making it an ideal material for producing value-added products like bioactive peptides which have antioxidant properties. For this study, protein was extracted from BSG, hydrolyzed with 1% alcalase and flavourzyme, with the generated protein hydrolysates (AlcH and FlaH) showing antioxidant activities. This study evaluated the effects of AlcH and FlaH on gas production, ruminal fermentation characteristics, nutrient disappearance, microbial protein synthesis and microbial community using an artificial rumen system (RUSITEC) fed a high-grain diet. Results As compared to the control of grain only, supplementation of FlaH decreased ( P < 0.01) disappearances of dry matter (DM), organic matter (OM), CP and starch, without affecting fibre disappearances; while AlcH had no effect on nutrient disappearance. Neither AlcH nor FlaH affected gas production or VFA profiles, however they increased ( P < 0.01) NH 3 -N and decreased ( P < 0.01) H 2 production. Supplementation of FlaH decreased ( P < 0.01) the percentage of CH 4 in total gas and dissolved-CH 4 (dCH 4 ) in dissolved gas. Addition of monensin reduced ( P < 0.01) disappearance of nutrients, improved fermentation efficiency and reduced CH 4 and H 2 emissions. Total microbial nitrogen production was decreased ( P < 0.05) but the proportion of feed particle associated (FPA) bacteria was increased with FlaH and monensin supplementation. Numbers of OTUs and Shannon diversity indices of FPA microbial community were unaffected by AlcH and FlaH; whereas both indices were reduced ( P < 0.05) by monensin. Taxonomic analysis revealed no effect of AlcH and FlaH on the relative abundance (RA) of bacteria at phylum level, whereas monensin reduced ( P < 0.05) the RA of Firmicutes and Bacteroidetes and enhanced Proteobacteria. Supplementation of FlaH enhanced ( P < 0.05) the RA of genus Prevotella , reduced Selenomonas , Shuttleworthia , Bifidobacterium and Dialister as compared to control; monensin reduced ( P < 0.05) RA of genus Prevotella but enhaced Succinivibrio . Conclusions The supplementation of FlaH in high-grain diets may potentially protect CP and starch from ruminal degradation, without adversely affecting fibre degradation and VFA profiles. It also showed promising effects on reducing CH 4 production by suppressing H 2 production. Protein enzymatic hydrolysates from BSG using flavourzyme showed potential application to high value-added bio-products.


Sign in / Sign up

Export Citation Format

Share Document