scholarly journals Strategies for Targeting Retroviral Integration for Safer Gene Therapy: Advances and Challenges

2021 ◽  
Vol 8 ◽  
Author(s):  
Kristine E. Yoder ◽  
Anthony J. Rabe ◽  
Richard Fishel ◽  
Ross C. Larue

Retroviruses are obligate intracellular parasites that must integrate a copy of the viral genome into the host DNA. The integration reaction is performed by the viral enzyme integrase in complex with the two ends of the viral cDNA genome and yields an integrated provirus. Retroviral vector particles are attractive gene therapy delivery tools due to their stable integration. However, some retroviral integration events may dysregulate host oncogenes leading to cancer in gene therapy patients. Multiple strategies to target retroviral integration, particularly to genetic safe harbors, have been tested with limited success. Attempts to target integration may be limited by the multimerization of integrase or the presence of host co-factors for integration. Several retroviral integration complexes have evolved a mechanism of tethering to chromatin via a host protein. Integration host co-factors bind chromatin, anchoring the complex and allowing integration. The tethering factor allows for both close proximity to the target DNA and specificity of targeting. Each retrovirus appears to have distinct preferences for DNA sequence and chromatin features at the integration site. Tethering factors determine the preference for chromatin features, but do not affect the subtle sequence preference at the integration site. The sequence preference is likely intrinsic to the integrase protein. New developments may uncouple the requirement for a tethering factor and increase the ability to redirect retroviral integration.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 262-262
Author(s):  
Olivier Humbert ◽  
Christopher R Burtner ◽  
Patricia O'Donnell ◽  
Daniel R Humphrys ◽  
Nicholas Hubbard ◽  
...  

Abstract In vivo gene therapy has several benefits over ex vivo hematopoietic stem cell gene therapy, including the correction of progenitor cells in their native environments, the portability of the treatment to the patient, and the ability to administer serial doses of therapeutic vector. Foamy viruses (FV) are ideal vectors for in vivo gene therapy because they are non-pathogenic in humans, they exhibit increased serum stability and they integrate into host genomes with a favorable integration pattern. We recently demonstrated that intravenous injection of a FV vector expressing the human common gamma chain (γC) under the constitutively active short elongation factor 1α (EF1α) promoter is sufficient to drive development of functional CD3+ lymphocytes in canine X-SCID (Burtner CR et al. Intravenous injection of a foamy virus vector to correct canine SCID-X1. Blood. 2014;123(23):3578-84). However, retroviral integration site analysis in that study indicated that T cell reconstitution occurred through the correction of a limited number of progenitors, possibly due to sub-therapeutic expression levels from the EF1α promoter. To address this issue, we are evaluating multiple parameters of vector design for in vivo gene therapy that include different promoters and different fluorophores. We performed a head-to-head comparison of two promoters, our previously used EF1α promoter and the human phosphoglycerate kinase (PGK) promoter, by simultaneously injecting three X-SCID pups with equal titers of two therapeutic, human γC-encoding FV vectors. These vectors expressed the fluorophores GFP or mCherry to allow for tracking of transduced cells. Each dog received between 3 and 4 x 108 infectious units of each FV vector. In all treated dogs, lymphocyte marking in the PGK arm reached 50% between day 60 and day 110 post-injection and continued to expand over time, while the EF1α arm peaked at day 42 and never expanded above 10% (Fig 1A). Interestingly, the expansion of T lymphocytes from gene-modified cells expressing γC under the PGK promoter appeared to preclude further development of T cells by the EF1α arm, suggesting competition within the expanding T cell niche. The development of total CD3+ T cells achieved therapeutic levels (1000 cells/μL of blood) in all three dogs between day 70 and day 130 post-treatment (Fig 1B). We further validated the functionality of these cells by showing that they express a diverse T cell receptor repertoire using spectratyping analysis. In addition, peripheral blood mononuclear cells from the treated animals could be activated in vitro by exposure to the mitogen Phytohemagglutinin A at a level comparable to normal cells. Immunization of the treated dogs with bacteriophage ΦX174 showed production of specific IgG antibodies, suggesting the ability of B lymphocytes to undergo isotype switching. Finally, retroviral integration site analysis revealed polyclonal contribution to the reconstituting T cells. In summary, our data suggest that the PGK promoter results in a robust and sustained correction of progenitor T cells in a relevant large-animal disease model for primary immunodeficiency. The outcome in dogs was substantially improved compared to our previous study using EF1α, where robust lymphocyte marking was achieved in only 2 of 5 dogs, and where clonal dominance was observed. Ongoing work will determine whether the superior performance of the PGK vector is due to higher γC expression in PGK vs. EF1α corrected cells. Figure 1. T-cells expansion in X-SCID dogs following FV treatment. A) Percent of gene-modified peripheral blood lymphocytes in each experimental arm after in vivo gene therapy. B) Absolute CD3+ count per μL peripheral blood in all treated animals. Dotted line indicates therapeutic counts of CD3+ cells. Figure 1. T-cells expansion in X-SCID dogs following FV treatment. A) Percent of gene-modified peripheral blood lymphocytes in each experimental arm after in vivo gene therapy. B) Absolute CD3+ count per μL peripheral blood in all treated animals. Dotted line indicates therapeutic counts of CD3+ cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 115 (22) ◽  
pp. 4356-4366 ◽  
Author(s):  
Gary P. Wang ◽  
Charles C. Berry ◽  
Nirav Malani ◽  
Philippe Leboulch ◽  
Alain Fischer ◽  
...  

Abstract X-linked severe-combined immunodeficiency (SCID-X1) has been treated by therapeutic gene transfer using gammaretroviral vectors, but insertional activation of proto-oncogenes contributed to leukemia in some patients. Here we report a longitudinal study of gene-corrected progenitor cell populations from 8 patients using 454 pyrosequencing to map vector integration sites, and extensive resampling to allow quantification of clonal abundance. The number of transduced cells infused into patients initially predicted the subsequent diversity of circulating cells. A capture-recapture analysis was used to estimate the size of the gene-corrected cell pool, revealing that less than 1/100th of the infused cells had long-term repopulating activity. Integration sites were clustered even at early time points, often near genes involved in growth control, and several patients harbored expanded cell clones with vectors integrated near the cancer-implicated genes CCND2 and HMGA2, but remain healthy. Integration site tracking also documented that chemotherapy for adverse events resulted in successful control. The longitudinal analysis emphasizes that key features of transduced cell populations—including diversity, integration site clustering, and expansion of some clones—were established early after transplantation. The approaches to sequencing and bioinformatics analysis reported here should be widely useful in assessing the outcome of gene therapy trials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalia Izotova ◽  
Christine Rivat ◽  
Cristina Baricordi ◽  
Elena Blanco ◽  
Danilo Pellin ◽  
...  

AbstractOur mathematical model of integration site data in clinical gene therapy supported the existence of long-term lymphoid progenitors capable of surviving independently from hematopoietic stem cells. To date, no experimental setting has been available to validate this prediction. We here report evidence of a population of lymphoid progenitors capable of independently maintaining T and NK cell production for 15 years in humans. The gene therapy patients of this study lack vector-positive myeloid/B cells indicating absence of engineered stem cells but retain gene marking in both T and NK. Decades after treatment, we can still detect and analyse transduced naïve T cells whose production is likely maintained by a population of long-term lymphoid progenitors. By tracking insertional clonal markers overtime, we suggest that these progenitors can support both T and NK cell production. Identification of these long-term lymphoid progenitors could be utilised for the development of next generation gene- and cancer-immunotherapies.


2020 ◽  
Author(s):  
Gregory J Bedwell ◽  
Alan N Engelman

Abstract The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.


2008 ◽  
Vol 40 (2) ◽  
pp. 262
Author(s):  
Annette Deichman ◽  
Manfred Schmidt ◽  
Salima Hacein-Bey Abina ◽  
Marina Cavazzana-Calvo ◽  
Kerstin Schwarzwaelder ◽  
...  

2007 ◽  
Vol 18 (10) ◽  
pp. 895-906 ◽  
Author(s):  
Junko Mitsuhashi ◽  
Satomi Tsukahara ◽  
Rieko Suzuki ◽  
Yumiko Oh-Hara ◽  
Saori Nishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document