scholarly journals A Novel Computer-Aided-Diagnosis System for Breast Ultrasound Images Based on BI-RADS Categories

2020 ◽  
Vol 10 (5) ◽  
pp. 1830
Author(s):  
Yi-Wei Chang ◽  
Yun-Ru Chen ◽  
Chien-Chuan Ko ◽  
Wei-Yang Lin ◽  
Keng-Pei Lin

The breast ultrasound is not only one of major devices for breast tissue imaging, but also one of important methods in breast tumor screening. It is non-radiative, non-invasive, harmless, simple, and low cost screening. The American College of Radiology (ACR) proposed the Breast Imaging Reporting and Data System (BI-RADS) to evaluate far more breast lesion severities compared to traditional diagnoses according to five-criterion categories of masses composition described as follows: shape, orientation, margin, echo pattern, and posterior features. However, there exist some problems, such as intensity differences and different resolutions in image acquisition among different types of ultrasound imaging modalities so that clinicians cannot always identify accurately the BI-RADS categories or disease severities. To this end, this article adopted three different brands of ultrasound scanners to fetch breast images for our experimental samples. The breast lesion was detected on the original image using preprocessing, image segmentation, etc. The breast tumor’s severity was evaluated on the features of the breast lesion via our proposed classifiers according to the BI-RADS standard rather than traditional assessment on the severity; i.e., merely using benign or malignant. In this work, we mainly focused on the BI-RADS categories 2–5 after the stage of segmentation as a result of the clinical practice. Moreover, several features related to lesion severities based on the selected BI-RADS categories were introduced into three machine learning classifiers, including a Support Vector Machine (SVM), Random Forest (RF), and Convolution Neural Network (CNN) combined with feature selection to develop a multi-class assessment of breast tumor severity based on BI-RADS. Experimental results show that the proposed CAD system based on BI-RADS can obtain the identification accuracies with SVM, RF, and CNN reaching 80.00%, 77.78%, and 85.42%, respectively. We also validated the performance and adaptability of the classification using different ultrasound scanners. Results also indicate that the evaluations of F-score based on CNN can obtain measures higher than 75% (i.e., prominent adaptability) when samples were tested on various BI-RADS categories.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhemin Zhuang ◽  
Zengbiao Yang ◽  
Shuxin Zhuang ◽  
Alex Noel Joseph Raj ◽  
Ye Yuan ◽  
...  

Breast ultrasound examination is a routine, fast, and safe method for clinical diagnosis of breast tumors. In this paper, a classification method based on multi-features and support vector machines was proposed for breast tumor diagnosis. Multi-features are composed of characteristic features and deep learning features of breast tumor images. Initially, an improved level set algorithm was used to segment the lesion in breast ultrasound images, which provided an accurate calculation of characteristic features, such as orientation, edge indistinctness, characteristics of posterior shadowing region, and shape complexity. Simultaneously, we used transfer learning to construct a pretrained model as a feature extractor to extract the deep learning features of breast ultrasound images. Finally, the multi-features were fused and fed to support vector machine for the further classification of breast ultrasound images. The proposed model, when tested on unknown samples, provided a classification accuracy of 92.5% for cancerous and noncancerous tumors.


2020 ◽  
Vol 43 (1) ◽  
pp. 29-45
Author(s):  
Alex Noel Joseph Raj ◽  
Ruban Nersisson ◽  
Vijayalakshmi G. V. Mahesh ◽  
Zhemin Zhuang

Nipple is a vital landmark in the breast lesion diagnosis. Although there are advanced computer-aided detection (CADe) systems for nipple detection in breast mediolateral oblique (MLO) views of mammogram images, few academic works address the coronal views of breast ultrasound (BUS) images. This paper addresses a novel CADe system to locate the Nipple Shadow Area (NSA) in ultrasound images. Here the Hu Moments and Gray-level Co-occurrence Matrix (GLCM) were calculated through an iterative sliding window for the extraction of shape and texture features. These features are then concatenated and fed into an Artificial Neural Network (ANN) to obtain probable NSA’s. Later, contour features, such as shape complexity through fractal dimension, edge distance from the periphery and contour area, were computed and passed into a Support Vector Machine (SVM) to identify the accurate NSA in each case. The coronal plane BUS dataset is built upon our own, which consists of 64 images from 13 patients. The test results show that the proposed CADe system achieves 91.99% accuracy, 97.55% specificity, 82.46% sensitivity and 88% F-score on our dataset.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6201 ◽  
Author(s):  
Dina A. Ragab ◽  
Maha Sharkas ◽  
Stephen Marshall ◽  
Jinchang Ren

It is important to detect breast cancer as early as possible. In this manuscript, a new methodology for classifying breast cancer using deep learning and some segmentation techniques are introduced. A new computer aided detection (CAD) system is proposed for classifying benign and malignant mass tumors in breast mammography images. In this CAD system, two segmentation approaches are used. The first approach involves determining the region of interest (ROI) manually, while the second approach uses the technique of threshold and region based. The deep convolutional neural network (DCNN) is used for feature extraction. A well-known DCNN architecture named AlexNet is used and is fine-tuned to classify two classes instead of 1,000 classes. The last fully connected (fc) layer is connected to the support vector machine (SVM) classifier to obtain better accuracy. The results are obtained using the following publicly available datasets (1) the digital database for screening mammography (DDSM); and (2) the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). Training on a large number of data gives high accuracy rate. Nevertheless, the biomedical datasets contain a relatively small number of samples due to limited patient volume. Accordingly, data augmentation is a method for increasing the size of the input data by generating new data from the original input data. There are many forms for the data augmentation; the one used here is the rotation. The accuracy of the new-trained DCNN architecture is 71.01% when cropping the ROI manually from the mammogram. The highest area under the curve (AUC) achieved was 0.88 (88%) for the samples obtained from both segmentation techniques. Moreover, when using the samples obtained from the CBIS-DDSM, the accuracy of the DCNN is increased to 73.6%. Consequently, the SVM accuracy becomes 87.2% with an AUC equaling to 0.94 (94%). This is the highest AUC value compared to previous work using the same conditions.


Author(s):  
Strivathsav Ashwin Ramamoorthy ◽  
Varun P. Gopi

Breast cancer is a serious disease among women, and its early detection is very crucial for the treatment of cancer. To assist radiologists who manually delineate the tumour from the ultrasound image an automatic computerized method of detection called CAD (computer-aided diagnosis) is developed to provide valuable inputs for radiologists. The CAD systems is divided into many branches like pre-processing, segmentation, feature extraction, and classification. This chapter solely focuses on the first two branches of the CAD system the pre-processing and segmentation. Ultrasound images acquired depends on the operator expertise and is found to be of low contrast and fuzzy in nature. For the pre-processing branch, a contrast enhancement algorithm based on fuzzy logic is implemented which could help in the efficient delineation of the tumour from ultrasound image.


2005 ◽  
Vol 4 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Radhika Sivaramakrishna

Image registration is an important problem in breast imaging. It is used in a wide variety of applications that include better visualization of lesions on pre- and post-contrast breast MRI images, speckle tracking and image compounding in breast ultrasound images, alignment of positron emission, and standard mammography images on hybrid machines et cetera. It is a prerequisite to align images taken at different times to isolate small interval lesions. Image registration also has useful applications in monitoring cancer therapy. The field of breast image registration has gained considerable interest in recent years. While the primary focus of interest continues to be the registration of pre- and post-contrast breast MRI images, other areas like breast ultrasound registration have gained more attention in recent years. The focus of registration algorithms has also shifted from control point based semiautomated techniques, to more sophisticated voxel based automated techniques that use mutual information as a similarity measure. This paper visits the problem of breast image registration and provides an overview of the current state-of-the-art in this area.


2016 ◽  
Vol 32 (3) ◽  
pp. 283-292 ◽  
Author(s):  
Carmina Dessana Lima Nascimento ◽  
Sérgio Deodoro de Souza Silva ◽  
Thales Araújo da Silva ◽  
Wagner Coelho de Albuquerque Pereira ◽  
Marly Guimarães Fernandes Costa ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Yunzhu Wu ◽  
Ruoxin Zhang ◽  
Lei Zhu ◽  
Weiming Wang ◽  
Shengwen Wang ◽  
...  

Automatic and accurate segmentation of breast lesion regions from ultrasonography is an essential step for ultrasound-guided diagnosis and treatment. However, developing a desirable segmentation method is very difficult due to strong imaging artifacts e.g., speckle noise, low contrast and intensity inhomogeneity, in breast ultrasound images. To solve this problem, this paper proposes a novel boundary-guided multiscale network (BGM-Net) to boost the performance of breast lesion segmentation from ultrasound images based on the feature pyramid network (FPN). First, we develop a boundary-guided feature enhancement (BGFE) module to enhance the feature map for each FPN layer by learning a boundary map of breast lesion regions. The BGFE module improves the boundary detection capability of the FPN framework so that weak boundaries in ambiguous regions can be correctly identified. Second, we design a multiscale scheme to leverage the information from different image scales in order to tackle ultrasound artifacts. Specifically, we downsample each testing image into a coarse counterpart, and both the testing image and its coarse counterpart are input into BGM-Net to predict a fine and a coarse segmentation maps, respectively. The segmentation result is then produced by fusing the fine and the coarse segmentation maps so that breast lesion regions are accurately segmented from ultrasound images and false detections are effectively removed attributing to boundary feature enhancement and multiscale image information. We validate the performance of the proposed approach on two challenging breast ultrasound datasets, and experimental results demonstrate that our approach outperforms state-of-the-art methods.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1859
Author(s):  
Elham Yousef Kalafi ◽  
Ata Jodeiri ◽  
Seyed Kamaledin Setarehdan ◽  
Ng Wei Lin ◽  
Kartini Rahmat ◽  
...  

The reliable classification of benign and malignant lesions in breast ultrasound images can provide an effective and relatively low-cost method for the early diagnosis of breast cancer. The accuracy of the diagnosis is, however, highly dependent on the quality of the ultrasound systems and the experience of the users (radiologists). The use of deep convolutional neural network approaches has provided solutions for the efficient analysis of breast ultrasound images. In this study, we propose a new framework for the classification of breast cancer lesions with an attention module in a modified VGG16 architecture. The adopted attention mechanism enhances the feature discrimination between the background and targeted lesions in ultrasound. We also propose a new ensembled loss function, which is a combination of binary cross-entropy and the logarithm of the hyperbolic cosine loss, to improve the model discrepancy between classified lesions and their labels. This combined loss function optimizes the network more quickly. The proposed model outperformed other modified VGG16 architectures, with an accuracy of 93%, and also, the results are competitive with those of other state-of-the-art frameworks for the classification of breast cancer lesions. Our experimental results show that the choice of loss function is highly important and plays a key role in breast lesion classification tasks. Additionally, by adding an attention block, we could improve the performance of the model.


2003 ◽  
pp. 368-371 ◽  
Author(s):  
Takeshi Hara ◽  
Daisuke Fukuoka ◽  
Hiroshi Fujita ◽  
Tokiko Endo ◽  
Woo Kyung Moon

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
M. T. Islam ◽  
M. Z. Mahmud ◽  
M. Tarikul Islam ◽  
S. Kibria ◽  
M. Samsuzzaman

Abstract Globally, breast cancer is a major reason for female mortality. Due to the limitations of current clinical imaging, the researchers are encouraged to explore alternative and complementary tools to available techniques to detect the breast tumor in an earlier stage. This article outlines a new, portable, and low-cost microwave imaging (MWI) system using an iterative enhancing technique for breast imaging. A compact side slotted tapered slot antenna is designed for microwave imaging. The radiating fins of tapered slot antenna are modified by etching nine rectangular side slots. The irregular slots on the radiating fins enhance the electrical length as well as produce strong directive radiation due to the suppression of induced surface currents that radiate vertically at the outer edges of the radiating arms with end-fire direction. It has remarkable effects on efficiency and gain. With the addition of slots, the side-lobe levels are reduced, the gain of the main-lobe is increased and corrects the squint effects simultaneously, thus improving the characteristics of the radiation. For experimental validation, a heterogeneous breast phantom was developed that contains dielectric properties identical to real breast tissues with the inclusion of tumors. An alternative PC controlled and microcontroller-based mechanical MWI system is designed and developed to collect the antenna scattering signal. The radiated backscattered signals from the targeted area of the human body are analyzed to reveal the changes in dielectric properties in tissues. The dielectric constants of tumorous cells are higher than that of normal tissues due to their higher water content. The remarkable deviation of the scattered field is processed by using newly proposed Iteratively Corrected Delay and Sum (IC-DAS) algorithm and the reconstruction of the image of the phantom interior is done. The developed UWB (Ultra-Wideband) antenna based MWI has been able to perform the detection of tumorous cells in breast phantom that can pave the way to saving lives.


Sign in / Sign up

Export Citation Format

Share Document