capture range
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 7 (4) ◽  
pp. 70-86
Author(s):  
Premananda B. S. ◽  
Dhanush T. N. ◽  
Vaishnavi S. Parashar ◽  
D. Aneesh Bharadwaj

Phase-locked loop (PLL) operates at a high frequency and due to the increased switching rate of the circuits, the power consumption is high. Designing a PLL which consumes less power without compromising the frequency of operation is essential. The sub-components of PLL such as the phase frequency detector, charge pump, loop filter, voltage-controlled oscillator, and the frequency divider have to be designed for reduced power consumption. The proposed PLL along with its sub-components have been designed using the CMOS 180nm technology library in the Cadence Virtuoso and simulated using Cadence Spectre with a supply voltage of 1.8V resulting in a 20% reduction in power with a higher frequency of operation compared to the reference PLL architecture. The capture range and lock range of the proposed PLL are 2.09 to 2.14 GHz and 1 to 3.5GHz, respectively. The designed PLL consumes less power and operates at a higher frequency.


2021 ◽  
Vol 1864 (1) ◽  
pp. 012063
Author(s):  
N.V. Kuznetsov ◽  
M.Y. Lobachev ◽  
M.V. Yuldashev ◽  
R.V. Yuldashev ◽  
S.I. Volskiy ◽  
...  

2020 ◽  
pp. 1-16
Author(s):  
Han Fu ◽  
Hugh H.-T. Liu

A target defense game with two defenders and a faster intruder is solved based on the classic differential game theory. In the game, the intruder seeks to enter a circular target area, while the defenders endeavor to capture it outside of the target. Under the faster intruder assumption, the game has two phases, where the optimal trajectories are straight and curved, respectively. In the second phase, a peculiar phenomenon exists where the intruder moves at the edge of one defender’s capture region, yet this defender cannot force capture. Because of this, the terminal states of the game are singular, therefore the standard method of integrating optimal trajectories from terminal states is not applicable. The way to circumvent this singularity is to solve the optimal trajectories of a two-player game between the intruder and the closer defender, and assemble them with the trajectory of the other defender. The key contribution of this paper is the solution of the intruder-closer-defender subgame against a circular target area. In the vector field of the optimal trajectories, two singular surfaces and a singular point are observed. Each singular surface indicates a discontinuity in the closer defender’s control, while the singular point represents a situation where the target is successfully protected by a single defender. The complete solution of the two-defender game is solved based on the result of the intruder-closer-defender subgame. The proposed solution is verified through a special case where the capture range is zero. This verification also presents a simpler approach of solving the zero capture range problem.


Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 55 ◽  
Author(s):  
Tong-Tong Zhou ◽  
Feng-He Zhao ◽  
Yu-Qian Cui ◽  
Li-Xiang Chen ◽  
Jia-Shu Yan ◽  
...  

As the world faces water shortage and pollution crises, the development of novel visible light photocatalysts to purify water resources is urgently needed. Over the past decades, most of the reported photocatalysts have been in powder or granular forms, creating separation and recycling difficulties. To overcome these challenges, a flexible and recyclable heterostructured TiO2/polyvinylidene fluoride/graphitic carbon nitride (TiO2/PVDF/g-C3N4) composite was developed by combining electrospinning, sintering and hydrothermal methods. In the composite, PVDF was used as a support template for removing and separating the photocatalyst from solution. Compared with pure TiO2, the TiO2/PVDF/g-C3N4 composite exhibited the extended light capture range of TiO2 into the visible light region. The photogenerated carriers were efficiently transferred and separated at the contact interface between TiO2 and g-C3N4 under visible light irradiation, which consequently increased the photocatalytic activity of the photocatalyst. In addition, the flexible composites exhibited excellent self-cleaning properties, and the dye on the photocatalysts was completely degraded by the as-prepared materials. Based on the intrinsic low cost, recyclability, absorption of visible light, facile synthesis, self-cleaning properties and good photocatalytic performances of the composite, the photocatalyst is expected to be used for water treatment.


2019 ◽  
Author(s):  
Pierre Jouchet ◽  
Clément Cabriel ◽  
Nicolas Bourg ◽  
Marion Bardou ◽  
Christian Poüs ◽  
...  

AbstractStrategies have been developed in LIDAR to perform distance measurements for non-coherent emission in sparse samples based on excitation modulation. Super-resolution fluorescence microscopy is also striving to perform axial localization but through entirely different approaches. Here we revisit the amplitude modulated LIDAR approach to reach nanometric localization precision and we successfully adapt it to bring distinct advantages to super-resolution microscopy. The excitation pattern is performed by interference enabling the decoupling between spatial and time modulation. The localization of a single emitter is performed by measuring the relative phase of its linear fluorescent response to the known shifting excitation field. Taking advantage of a tilted interfering configuration, we obtain a typical axial localization precision of 7.5 nm over the entire field of view and the axial capture range, without compromising on the acquisition time, the emitter density or the lateral localization precision. The interfering pattern being robust to optical aberrations, this modulated localization (ModLoc) strategy is particularly well suited for observations deep in the samples. Images performed on various biological samples show that the localization precision remains nearly constant up to several micrometers.


Sign in / Sign up

Export Citation Format

Share Document