scholarly journals GSTP1 and GSTM3 Variant Alleles Affect Susceptibility and Severity of COVID-19

2021 ◽  
Vol 8 ◽  
Author(s):  
Vesna Coric ◽  
Ivana Milosevic ◽  
Tatjana Djukic ◽  
Zoran Bukumiric ◽  
Ana Savic-Radojevic ◽  
...  

Based on the premise that oxidative stress plays an important role in severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection, we speculated that variations in the antioxidant activities of different members of the glutathione S-transferase family of enzymes might modulate individual susceptibility towards development of clinical manifestations in COVID-19. The distribution of polymorphisms in cytosolic glutathione S-transferases GSTA1, GSTM1, GSTM3, GSTP1 (rs1695 and rs1138272), and GSTT1 were assessed in 207 COVID-19 patients and 252 matched healthy individuals, emphasizing their individual and cumulative effect in disease development and severity. GST polymorphisms were determined by appropriate PCR methods. Among six GST polymorphisms analyzed in this study, GSTP1 rs1695 and GSTM3 were found to be associated with COVID-19. Indeed, the data obtained showed that individuals carrying variant GSTP1-Val allele exhibit lower odds of COVID-19 development (p = 0.002), contrary to carriers of variant GSTM3-CC genotype which have higher odds for COVID-19 (p = 0.024). Moreover, combined GSTP1 (rs1138272 and rs1695) and GSTM3 genotype exhibited cumulative risk regarding both COVID-19 occurrence and COVID-19 severity (p = 0.001 and p = 0.025, respectively). Further studies are needed to clarify the exact roles of specific glutathione S-transferases once the SARS-CoV-2 infection is initiated in the host cell.

Parasitology ◽  
2008 ◽  
Vol 135 (10) ◽  
pp. 1215-1223 ◽  
Author(s):  
A. JOACHIM ◽  
B. RUTTKOWSKI

SUMMARYOesophagostomum dentatum stages were investigated for glutathione S-transferase (GST) expression at the protein and mRNA levels. GST activity was detected in all stages (infectious and parasitic stages including third- and fourth-stage larvae of different ages as well as males and females) and could be dose-dependently inhibited with sulfobromophthalein (SBP). Addition of SBP to in vitro larval cultures reversibly inhibited development from third- to fourth-stage larvae. Two glutathione-affinity purified proteins (23 and 25 kDa) were detected in lysates of exsheathed third-stage larvae by SDS-PAGE. PCR-primers were designed based on peptide sequences and conserved GST sequences of other nematodes for complete cDNA sequences (621 and 624 nt) of 2 isoforms, Od-GST1 and Od-GST2, with 72% nucleotide similarity and 75% for the deduced proteins. Genomic sequences consisted of 7 exons and 6 introns spanning 1296 bp for Od-GST1 and 1579 and 1606 bp for Od-GST2. Quantitative real-time-PCR revealed considerably elevated levels of Od-GST1 in the early parasitic stages and slightly reduced levels of Od-GST2 in male worms. Both Od-GSTs were most similar to GST of Ancylostoma caninum (nucleotides: 73 and 70%; amino acids: 80 and 73%). The first three exons (75 amino acids) corresponded to a synthetic prostaglandin D2 synthase (53% similarity). O. dentatum GSTs might be involved in intrinsic metabolic pathways which could play a role both in nematode physiology and in host-parasite interactions.


1989 ◽  
Vol 257 (2) ◽  
pp. 471-476 ◽  
Author(s):  
W H M Peters ◽  
H M J Roelofs ◽  
F M Nagengast ◽  
J H M van Tongeren

Cytosolic glutathione S-transferases were purified from the epithelial cells of human small and large intestine. These preparations were characterized with regard to specific activities, subunit and isoenzyme composition. Isoenzyme composition and specific activity showed little variation from proximal to distal small intestine. Specific activities of hepatic and intestinal enzymes from the same patient were comparable. Hepatic enzymes were mainly composed of 25 kDa subunits. Transferases from small intestine contained 24 and 25 kDa subunits, in variable amounts. Colon enzymes were composed of 24 kDa subunits. In most preparations, however, minor amounts of 27 and 27.5 kDa subunits were detectable. Separation into isoforms by isoelectric focusing revealed striking differences: glutathione S-transferases from liver were mainly basic or neutral, enzymes from small intestine were basic, neutral and acidic, whereas large intestine contained acidic isoforms only. The intestinal acidic transferase most probably was identical with glutathione S-transferase Pi, isolated from human placenta. In the hepatic preparation, this isoform was hardly detectable. The specific activity of glutathione S-transferase showed a sharp fall from small to large intestine. In proximal and distal colon, activity seemed to be about equal. In the ascending colon there might be a relationship between specific activity of glutathione S-transferases and age of the patient, activity decreasing with increasing age.


1983 ◽  
Vol 215 (3) ◽  
pp. 617-625 ◽  
Author(s):  
T Friedberg ◽  
U Milbert ◽  
P Bentley ◽  
T M Guenther ◽  
F Oesch

A hitherto unknown cytosolic glutathione S-transferase from rat liver was discovered and a method developed for its purification to apparent homogeneity. This enzyme had several properties that distinguished it from other glutathione S-transferases, and it was named glutathione S-transferase X. The purification procedure involved DEAE-cellulose chromatography, (NH4)2SO4 precipitation, affinity chromatography on Sepharose 4B to which glutathione was coupled and CM-cellulose chromatography, and allowed the isolation of glutathione S-transferases X, A, B and C in relatively large quantities suitable for the investigation of the toxicological role of these enzymes. Like glutathione S-transferase M, but unlike glutathione S-transferases AA, A, B, C, D and E, glutathione S-transferase X was retained on DEAE-cellulose. The end product, which was purified from rat liver 20 000 g supernatant about 50-fold, as determined with 1-chloro-2,4-dinitrobenzene as substrate and about 90-fold with the 1,2-dichloro-4-nitrobenzene as substrate, was judged to be homogeneous by several criteria, including sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, isoelectric focusing and immunoelectrophoresis. Results from sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration indicated that transferase X was a dimer with Mr about 45 000 composed of subunits with Mr 23 500. The isoelectric point of glutathione S-transferase X was 6.9, which is different from those of most of the other glutathione S-transferases (AA, A, B and C). The amino acid composition of transferase X was similar to that of transferase C. Immunoelectrophoresis of glutathione S-transferases A, C and X and precipitation of various combinations of these antigens by antisera raised against glutathione S-transferase X or C revealed that the glutathione S-transferases A, C and X have different electrophoretic mobilities, and indicated that transferase X is immunologically similar to transferase C, less similar to transferase A and not cross-reactive to transferases B and E. In contrast with transferases B and AA, glutathione S-transferase X did not bind cholic acid, which, together with the determination of the Mr, shows that it does not possess subunits Ya or Yc. Glutathione S-transferase X did not catalyse the reaction of menaphthyl sulphate with glutathione, and was in this respect dissimilar to glutathione S-transferase M; however, it conjugated 1,2-dichloro-4-nitrobenzene very rapidly, in contrast with transferases AA, B, D and E, which were nearly inactive towards that substrate.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 314 (3) ◽  
pp. 1017-1025 ◽  
Author(s):  
Horng-I. YEH ◽  
Jing-Yu LEE ◽  
Shu-Ping TSAI ◽  
Cheng-Hsilin HSIEH ◽  
Ming F. TAM

Cytosolic glutathione S-transferases (GSTs) from rat kidneys were purified by a combination of glutathione and S-hexylglutathione affinity columns. The isolated GSTs were subjected to reverse-phase HPLC and electrospray MS analysis. The major GST isoenzymes expressed in kidney are subunits 1, 2, 7 and 8. GST 1´, 3, and 4 are expressed in minor amounts. GST 10 is barely detectable in the male kidney cytosol. The molecular masses of these rat kidney GST subunits were determined by MS. The values obtained for subunits 1´, 2, 3, 4, 7, 8 and 10 are identical with those obtained for rat liver GSTs. Rat kidney GST 1 consists of three polypeptides, with molecular masses of 25517, 25372 and 24982 Da. Results from peptide mapping, MS and amino-acid-sequencing analyses indicate that the major components were generated by deleting the C-terminal phenylalanine (24982 Da) and the C-terminal IFKF tetrapeptide (25372 Da) from the GST 1 subunit, respectively. The 1-chloro-2,4-dinitrobenzene-conjugating and peroxidase activities of kidney GST 1 are substantially lower than for its counterpart from rat liver. In addition, rat kidney GST 1 has an arginine and a valine residue at positions 151 and 207 respectively. The results are in contradiction with the SWISS-PROT and GenBank rat liver GST 1 cDNA-sequencing data, which give a lysine and a methionine at the corresponding positions. Further analyses indicate that rat liver GST 1 also has C-terminal phenylalanine deletion, and an arginine and a valine residue at positions 151 and 207 respectively. However, the C-terminal-tetrapeptide-deleted form was not observed for rat liver GST 1.


1991 ◽  
Vol 273 (2) ◽  
pp. 323-332 ◽  
Author(s):  
A J Hussey ◽  
L A Kerr ◽  
A D Cronshaw ◽  
D J Harrison ◽  
J D Hayes

The cytosolic glutathione S-transferases (GST) from human skeletal muscle were purified by a combination of affinity chromatography and anion-exchange chromatography followed by either chromatofocusing or hydroxyapatite chromatography. Pi-class and Mu-class GST, but not Alpha-class GST, were isolated from muscle. In addition to a Pi-class GST subunit, which exists as a homodimer, this tissue also contains a total of three distinct neutral-type Mu-class GST subunits, which hybridize to form homodimers or heterodimers. The neutral-type subunits are referred to as N1-N3 and are defined by the decreasing isoelectric points of the homodimers; GST N1N1, N2N2 and N3N3 have estimated pI values of 6.1, 5.3 and less than 5.0 respectively. SDS/PAGE showed that N1, N2 and N3 have Mr values of 26,700, 26,000 and 26,300 respectively. The N1, N2 and N3 subunits are catalytically distinct, with N1 possessing a high activity for trans-4-phenylbut-3-en-2-one and N2 having high activity with 1,2-dichloro-4-nitrobenzene. In skeletal muscle the expression of the N1 subunit, but not of N2 and N3 subunits, was found to differ from specimen to specimen. The N1 subunit was absent from about 50% of samples examined, and the purification results from two different specimens are presented to illustrate this inter-individual variation. Skeletal muscle from one individual (M1), which did not express N1, contained only GST N2N2, N2N3 and pi, whereas the second sample examined (M2) contained GST N1N2, N2N2 and N2N3 as well as GST pi. N-Terminal amino acid sequence analysis supported the electrophoretic evidence that the N2 subunit in GST N1N2, N2N2 and N2N3 represents the same polypeptide. The peptides obtained from CNBr digests of N2 were subjected separately to automated amino acid sequencing, and the results indicate that N2 is distinct but closely related to the protein encoded by the human Mu-class cDNA clone GTH4 [DeJong, Chang, Whang-Peng, Knutsen & Tu (1988) Nucleic Acids Res. 16, 8541-8554]. GST N2N2 is probably identical with GST 4 [Board, Suzuki & Shaw (1988) Biochim. Biophys. Acta 953, 214-217], as over the 24 N-terminal residues of GST 4 there is complete identity between the two enzymes. Our data suggest that the GST 1 and GST 4 loci are part of the same multi-gene family.


1990 ◽  
Vol 270 (2) ◽  
pp. 483-489 ◽  
Author(s):  
J A Johnson ◽  
T L Neal ◽  
J H Collins ◽  
F L Siegel

Glutathione S-transferase (GST) subunits in rat liver cytosol were separated by reverse-phase h.p.l.c.; five major proteins were isolated and identified as subunits 1, 2, 3, 4 and 8. F.p.l.c. chromatofocusing resolved the affinity-purified GST pool into nine different isoenzymes. The five basic (Alpha class) dimeric peaks of GST activity were 1-1, 1-2a, 1-2b, 2-2a and 2-2b. Reverse-phase h.p.l.c. analysis revealed that subunit 8 was also present in the protein peaks designated 1-1, 1-2a and 1-2b. The four neutral (Mu class) isoenzymes were 3-3, 3-4, 3-6 and 4-4. The GST pool was methylated in vitro before reverse-phase h.p.l.c. or f.p.l.c. chromatofocusing. Chromatofocusing indicated that the Mu class isoforms (3-3, 3-4 and 4-4) were the primary GSTs methylated, and h.p.l.c. analysis confirmed that subunits 3 and 4 were the major methyl-accepting GST subunits. The addition of calmodulin stimulated the methylation in vitro of GST isoenzymes 3-3, 3-4 and 4-4 by 3.0-, 7.5- and 9.9-fold respectively. Reverse-phase h.p.l.c. also indicated that only the methylation of GST subunits 3 and 4 was stimulated by calmodulin. Basic GST isoenzymes were minimally methylated and the methylation was not enhanced by calmodulin. Investigation of the time course of methylation of GST subunits 3 and 4 indicated that at incubation times less than 4 h the methylation of both Mu class subunits was stimulated by calmodulin, and that under such conditions subunit 4 was the preferred substrate. In contrast, there was essentially no calmodulin-stimulated methylation at incubation times of 4 or 6 h, and the methylation of subunit 3 was predominant. Kinetic parameters at 2 h of incubation were determined in the presence and in the absence of calmodulin. The addition of calmodulin doubled the Vmax. for methylation of both subunits 3 and 4 and decreased the Km of subunit 4 for S-adenosyl-L-methionine 3.6-fold. Finally, methylation was substoichiometric and after 6 h of incubation ranged from 2.8 to 7.6% on a mole-to-mole basis for subunits 4 and 3 respectively.


1992 ◽  
Vol 70 (5) ◽  
pp. 349-353 ◽  
Author(s):  
Robyn L. Schecter ◽  
Moulay A. Alaoui-Jamali ◽  
Gerald Batist

Cytosolic glutathione S-transferases are composed of two monomeric subunits. These monomers are the products of different gene families designated alpha, mu, and pi. Dimerization yields either homodimeric or heterodimeric holoenzymes within the same family. The members of this complex group of proteins have been linked to the detoxification of environmental chemicals and carcinogens, and have been shown to be overexpressed in normal and tumor cells following exposure to cytotoxic drugs. They also are overexpressed in carcinogen-induced rat liver preneoplastic nodules in rat liver. In all of these cases, the changes in exprssion of glutathione S-transferases are paralleled by increased resistance to cytotoxic chemicals. The degree of resistance is related to the substrate specificity of the isozyme. The relationship of the glutathione S-transferase genes to drug resistance has been directly demonstrated by gene transfer studies, where cDNAs encoding the various subunits of glutathione S-transferase have been transfected into a variety of cell types. This review discusses the results of numerous studies that associate resistance to alkylating agents with overexpression of protective detoxifying glutathione S-transferase enzymes.Key words: glutathione S-transferase, chemotherapy, carcinogenesis, alkylating agents, DNA damage.


2000 ◽  
Vol 47 (1) ◽  
pp. 223-231 ◽  
Author(s):  
A Ciszewska-Piłczyńska ◽  
A Barańczyk-Kuźma

Male reproductive organs are extremely sensitive to the negative influence of toxic environmental factors as well as drugs, and until now not many attempts have been made at studying the detoxication enzymes and the relationship between the activity of those enzymes and spermatozoa fertility. In the present work we studied cytosolic glutathione-S-transferases (GST, EC 2.5.1.18) from different parts (head, corpus and tail) of bull and boar epididymis. We isolated two molecular forms of GST from each part of epididymis, characterized their biochemical properties and examined the mechanism of the catalyzed reaction. On the basis of their substrate specificity and isoelectric point, the isoforms were found to belong to the near neutral GST class mi. All examined GST forms exhibited higher affinity towards GSH than towards 1-chloro-2,4-dinitrobenzene (CDNB) and bull epididymis GST forms showed biphasic Lineweaver-Burk double reciprocal curves in the presence of GSH as a variable substrate. Boar epididymis anionic GST had the -SH groups both in the GSH and the CDNB binding place, whereas the cationic GST form--arginine residues in the CDNB binding place. Bull epididymis GST forms contained neither thiol nor arginine residues essential for catalytic activity.


2007 ◽  
Vol 12 (3) ◽  
pp. 396-405 ◽  
Author(s):  
Jeroen Kool ◽  
Mark Eggink ◽  
Huub van Rossum ◽  
Sebastiaan M. van Liempd ◽  
Danny A. van Elswijk ◽  
...  

A high-resolution screening (HRS) technology is described, which couples 2 parallel enzyme affinity detection (EAD) systems for substrates and inhibitors of rat cytosolic glutathione-S-transferases (cGSTs) and purified human GST P1 to gradient reversed-phase high-performance liquid chromatography (HPLC). The cGSTs and GST P1 EAD systems were optimized and validated first in flow injection analysis (FIA) mode, and optimized values were subsequently used for HPLC mode. The IC50 values of 8 ligands thus obtained online agreed well with the IC50 values obtained with microplate reader—based assays. For ethacrynic acid, an IC50 value of 1.8 ± 0.4 µM was obtained with the cGSTs EAD system in FIA mode and 0.8 ± 0.6 µM in HPLC mode. For ethacrynic acid with the GST P1 EAD system, IC50 values of 6.0 ± 2.9 and 3.6 ± 2.8 µM were obtained in FIA and HPLC modes, respectively. An HRS GST EAD system, consisting of both the cGSTs and the GST P1 EAD system in HPLC mode in parallel, was able to separate complex mixtures of compounds and to determine online their individual affinity for cGSTs and GST P1. Finally, a small library of GST inhibitors, synthesized by reaction of several electrophiles with glutathione (GSH), was successfully screened with the newly developed parallel HRS GST EAD system. It is concluded that the present online gradient HPLC-based HRS screening technology offers new perspectives for sensitive and simultaneous screening of general cGSTs and specific GST P1 inhibitors in mixtures. ( Journal of Biomolecular Screening 2007:396-405)


Sign in / Sign up

Export Citation Format

Share Document