scholarly journals The role of Mesothelin signaling in Portal Fibroblasts in the pathogenesis of cholestatic liver fibrosis

2021 ◽  
Vol 8 ◽  
Author(s):  
Hiroaki Fuji ◽  
Grant Miller ◽  
Takahiro Nishio ◽  
Yukinori Koyama ◽  
Kevin Lam ◽  
...  

Liver fibrosis develops in response to chronic toxic or cholestatic injury, and is characterized by apoptosis of damaged hepatocytes, development of inflammatory responses, and activation of Collagen Type I producing myofibroblasts that make liver fibrotic. Two major cell types, Hepatic Stellate Cells (HSCs) and Portal Fibroblasts (PFs) are the major source of hepatic myofibroblasts. Hepatotoxic liver injury activates Hepatic Stellate Cells (aHSCs) to become myofibroblasts, while cholestatic liver injury activates both aHSCs and Portal Fibroblasts (aPFs). aPFs comprise the major population of myofibroblasts at the onset of cholestatic injury, while aHSCs are increasingly activated with fibrosis progression. Here we summarize our current understanding of the role of aPFs in the pathogenesis of cholestatic fibrosis, their unique features, and outline the potential mechanism of targeting aPFs in fibrotic liver.

2021 ◽  
Vol 21 (5) ◽  
Author(s):  
Ming-yu Zhou ◽  
Xue-ke Zhao ◽  
Tao Huang ◽  
Gao-liang Zou ◽  
Rui-Han Hu ◽  
...  

Background: Hepatic stellate cells (HSCs) are the key effector cells in the occurrence and development of liver fibrosis, while aerobic glycolysis is one of the important metabolic characteristics of HSC activation. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a homodimeric bifunctional enzyme, which is a rate-limiting enzyme in glycolysis. This metabolite is important for the dynamic regulation of glycolytic flux. However, little is known about the role of PFKFB3 in liver fibrosis. Objectives: In this study, we aimed to explore the effects of PFKFB3 on aerobic glycolysis in the process of HSC trans-differentiation and liver fibrosis. Methods: Immunohistochemical (IHC) staining and immunofluorescence assays were used to examine PFKFB3 expression in mice fibrotic liver tissue. The determination of extracellular acidification rate was used to examine changes in aerobic glycolytic flux, lactate production levels, and glucose consumption levels in HSCs upon TGF-β1 stimulation. Western blot analysis of the expression of PFKFB3, α-SMA protein, and type I collagen was done. Liver histopathology was also examined. Besides, glycolytic inhibition by pharmacologic approaches was used to demonstrate the critical role of glycolysis in liver fibrosis. Results: The PFKFB3 protein expression was increased in mouse fibrotic liver tissue. In addition, immunofluorescence revealed the colocalization of PFKFB3 and alpha-smooth muscle actin (α-SMA) protein. In vitro experiments showed that PFKFB3 could promote glycolysis flux, lactic acid production, and glucose consumption of hepatic stellate cells. The PFKFB3 inhibitor was used in a mouse model of liver fibrosis, and the inhibition of PFKFB3 reduced the degree of liver inflammation and liver fibrosis. Conclusions: PFKFB3 can promote HSC aerobic glycolysis, which, in turn, promotes HSC activation and liver fibrosis.


2021 ◽  
Vol 21 ◽  
Author(s):  
Fahim Rejanur Tasin ◽  
Debasish Halder ◽  
Chanchal Mandal

: Liver fibrosis is one of the leading causes for cirrhotic liver disease and the lack of therapies to treat fibrotic liver is a major concern. Liver fibrosis is mainly occurred by activation of hepatic stellate cells and some stem cell therapies had previously reported for treatment. However, due to some problems with cell-based treatment, a safe therapeutic agent is vehemently sought by the researchers. Extracellular vesicles are cell-derived nanoparticles that are employed in several therapeutic approaches, including fibrosis, for their ability to transfer specific molecules in the target cells. In this review the possibilities of extracellular vesicles to inactivate stellate cells are summarized and discussed. According to several studies, extracellular vesicles from different sources can either put beneficial or detrimental effects by regulating the activation of stellate cells. Therefore, targeting extracellular vesicles for maximizing or inhibiting their production is a potential approach for fibrotic liver treatment. Extracellular vesicles from different cells can also inactivate stellate cells by carrying out the paracrine effects of those cells, working as the agents. They are also implicated as smart carrier of anti-fibrotic molecules when their respective parent cells are engineered to produce specific stellate cell-regulating substances. A number of studies showed stellate cell activation can be regulated by up/downregulation of specific proteins, and extracellular vesicle-based therapies can be an effective move to exploit these mechanisms. In conclusion, EVs are advantageous nano-carriers with the potential to treat fibrotic liver by inactivating activated stellate cells by various mechanisms.


2017 ◽  
Vol 312 (3) ◽  
pp. G219-G227 ◽  
Author(s):  
Leonie Beljaars ◽  
Sara Daliri ◽  
Christa Dijkhuizen ◽  
Klaas Poelstra ◽  
Reinoud Gosens

WNT-5A is a secreted growth factor that belongs to the noncanonical members of the Wingless-related MMTV-integration family. Previous studies pointed to a connection between WNT-5A and the fibrogenic factor TGF-β warranting further studies into the functional role of WNT-5A in liver fibrosis. Therefore, we studied WNT-5A expressions in mouse and human fibrotic livers and examined the relation between WNT-5A and various fibrosis-associated growth factors, cytokines, and extracellular matrix proteins. WNT-5A gene and protein expressions were significantly increased in fibrotic mouse and human livers compared with healthy livers. Regression or therapeutic intervention in mice resulted in decreased hepatic WNT-5A levels paralleled by lower collagen levels. Immunohistochemical analysis showed WNT-5A staining in fibrotic septa colocalizing with desmin staining indicating WNT-5A expression in myofibroblasts. In vitro studies confirmed WNT-5A expression in this cell type and showed that TGF-β significantly enhanced WNT-5A expression in contrast to PDGF-BB and proinflammatory cytokines IL-1β and TNF-α. Additionally, TGF-β induces the expression of the WNT receptors FZD2 and FZD8. After silencing of WNT-5A, reduced levels of collagen type I, vimentin, and fibronectin in TGF-β-stimulated myofibroblasts were measured compared with nonsilencing siRNA-treated controls. Interestingly, the antifibrotic cytokine IFNγ suppressed WNT-5A in vitro and in vivo. IFNγ-treated fibrotic mice showed significantly less WNT-5A expression compared with untreated fibrotic mice. In conclusion, WNT-5A paralleled collagen I levels in fibrotic mouse and human livers. WNT-5A expression in myofibroblasts is induced by the profibrotic factor TGF-β and plays an important role in TGF-β-induced regulation of fibrotic matrix proteins, whereas its expression can be reversed upon treatment, both in vitro and in vivo. NEW & NOTEWORTHY This study describes the localization and functional role of WNT-5A in human and mouse fibrotic livers. Hepatic WNT-5A expression parallels collagen type I expression. In vivo and in vitro, the myofibroblasts were identified as the key hepatic cells producing WNT-5A. WNT-5A is under control of TGF-β and its activities are primarily profibrotic.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0254557
Author(s):  
Christian Freise ◽  
Hyunho Lee ◽  
Christopher Chronowski ◽  
Doug Chan ◽  
Jessica Cziomer ◽  
...  

The interaction of extracellular matrix (ECM) components with hepatic stellate cells (HSCs) is thought to perpetuate fibrosis by stimulating signaling pathways that drive HSC activation, survival and proliferation. Consequently, disrupting the interaction between ECM and HSCs is considered a therapeutical avenue although respective targets and underlying mechanisms remain to be established. Here we have interrogated the interaction between type VI collagen (CVI) and HSCs based on the observation that CVI is 10-fold upregulated during fibrosis, closely associates with HSCs in vivo and promotes cell proliferation and cell survival in cancer cell lines. We exposed primary rat HSCs and a rat hepatic stellate cell line (CFSC) to soluble CVI and determined the rate of proliferation, apoptosis and fibrogenesis in the absence of any additional growth factors. We find that CVI in nanomolar concentrations prevents serum starvation-induced apoptosis. This potent anti-apoptotic effect is accompanied by induction of proliferation and acquisition of a pronounced pro-fibrogenic phenotype characterized by increased α-smooth muscle actin, TGF-β, collagen type I and TIMP-1 expression and diminished proteolytic MMP-13 expression. The CVI-HSC interaction can be disrupted with the monomeric α2(VI) and α3(VI) chains and abrogates the activating CVI effects. Further, functional relevant α3(VI)—derived 30 amino acid peptides lead to near-complete inhibition of the CVI effect. In conclusion, CVI serves as a potent mitogen and activating factor for HSCs. The antagonistic effects of the CVI monomeric chains and peptides point to linear peptide sequences that prevent activation of CVI receptors which may allow a targeted antifibrotic therapy.


2013 ◽  
Vol 56 (2) ◽  
pp. 73-79
Author(s):  
Lenka Bittnerová ◽  
Alena Jiroutová ◽  
Emil Rudolf ◽  
Martina Řezáčová ◽  
Jiří Kanta

Activated hepatic stellate cells (HSC) are a major source of fibrous proteins in cirrhotic liver. Inducing or accelerating their apoptosis is a potential way of liver fibrosis treatment. Extracellular matrix (ECM) surrounding cells in tissue affects their differentiation, migration, proliferation and function. Type I collagen is the main ECM component in fibrotic liver. We have examined how this protein modifies apoptosis of normal rat HSC induced by gliotoxin, cycloheximide and cytochalasin D in vitro and spontaneous apoptosis of HSC isolated from CCl4-damaged liver. We have found that type I collagen gel enhances HSC apoptosis regardless of the agent triggering this process.


2018 ◽  
Vol 27 (2) ◽  
pp. 115-121
Author(s):  
Mona A. Abu El Makarem ◽  
Ghada M. El-Sagheer ◽  
Moustafa A. Abu El-Ella

Objective: To investigate the possible role of signal transducer and activator of transcription 5 (STAT5) in the pathogenesis of liver fibrosis in Egyptian patients with chronic hepatitis C (CHC) virus infection and its relation to hepatic stellate cells (HSC). Subjects and Methods: Sixty-five patients (46 males and 19 females) were divided into 4 groups based on the severity of fibrosis as detected by Fibroscan as follows: F1, n = 15; F2, n = 21; F3, n = 13; and F4, n = 16. Twenty age- and gender-matched healthy persons volunteered as controls. The serum levels of STAT5, TGF-β1, α-smooth muscle actin (α-SMA), fasting blood sugar, and fasting insulin, as well as homeostasis model assessment of insulin resistance (HOMA-IR), were determined and compared for all groups. The usefulness of the studied serum biomarkers for predicting liver fibrosis was evaluated using a receiver operating characteristic curve. Results: Serum levels of STAT5 were significantly lower in patients compared to controls (9.69 ± 5.62 vs. 14.73 ± 6.52, p ≤ 0.001); on the contrary, TGF-β1, α-SMA, and HOMA-IR were significantly higher in patients compared to controls (mean: 1,796.04 vs. 1,636.94; 14.94 vs. 8.1; and 7.91 vs. 4.18; p ≤ 0.01 and 0.001, respectively). TGF-β1 and α-SMA showed a progressive increase with advancing severity of hepatic fibrosis (mean TGF-β1: 2,058.4 in F1-F2 and 1,583.8 in F3-F4, p ≤ 0.04; mean α-SMA: 13.59 in F1-F2 and 16.62 in F3-F4, p ≤ 0.05). STAT5 had a significant negative correlation with TGF-β1 (p ≤ 0.001), while no correlation was detected with α-SMA (p ≤ 0.8). Conclusions: STAT5 may play a significant role in hepatic fibrogenesis through the induction of TGF-β1 but not through the activation of hepatic stellate cells.


2020 ◽  
Vol 4 (5) ◽  
pp. 906-917
Author(s):  
Lauren G. Poole ◽  
Asmita Pant ◽  
Holly M. Cline‐Fedewa ◽  
Kurt J. Williams ◽  
Bryan L. Copple ◽  
...  

2007 ◽  
Vol 292 (4) ◽  
pp. G975-G982 ◽  
Author(s):  
Emma A. Kruglov ◽  
Paulo R. A. V. Correa ◽  
Gaurav Arora ◽  
Jin Yu ◽  
Michael H. Nathanson ◽  
...  

Progressive liver fibrosis (with the resultant cirrhosis) is the primary cause of chronic liver failure. Hepatic stellate cells (HSCs) are critically important mediators of liver fibrosis. In the healthy liver, HSCs are quiescent lipid-storing cells limited to the perisinusoidal endothelium. However, in the injured liver, HSCs undergo myofibroblastic transdifferentiation (activation), which is a critical step in the development of organ fibrosis. HSCs express P2Y receptors linking extracellular ATP to inositol (1,4,5)-trisphosphate-mediated cytosolic Ca2+ signals. Here, we report that HSCs express only the type I inositol (1,4,5)-trisphosphate receptor and that the receptor shifts into the nucleus and cell extensions upon activation. These cell extensions, furthermore, express sufficient machinery to enable local application of ATP to evoke highly localized Ca2+ signals that induce localized contractions. These autonomous units of subcellular signaling and response reveal a new level of subcellular organization, which, in turn, establishes a novel paradigm for the local control of fibrogenesis in the liver.


Sign in / Sign up

Export Citation Format

Share Document