scholarly journals Alpha-single chains of collagen type VI inhibit the fibrogenic effects of triple helical collagen VI in hepatic stellate cells

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0254557
Author(s):  
Christian Freise ◽  
Hyunho Lee ◽  
Christopher Chronowski ◽  
Doug Chan ◽  
Jessica Cziomer ◽  
...  

The interaction of extracellular matrix (ECM) components with hepatic stellate cells (HSCs) is thought to perpetuate fibrosis by stimulating signaling pathways that drive HSC activation, survival and proliferation. Consequently, disrupting the interaction between ECM and HSCs is considered a therapeutical avenue although respective targets and underlying mechanisms remain to be established. Here we have interrogated the interaction between type VI collagen (CVI) and HSCs based on the observation that CVI is 10-fold upregulated during fibrosis, closely associates with HSCs in vivo and promotes cell proliferation and cell survival in cancer cell lines. We exposed primary rat HSCs and a rat hepatic stellate cell line (CFSC) to soluble CVI and determined the rate of proliferation, apoptosis and fibrogenesis in the absence of any additional growth factors. We find that CVI in nanomolar concentrations prevents serum starvation-induced apoptosis. This potent anti-apoptotic effect is accompanied by induction of proliferation and acquisition of a pronounced pro-fibrogenic phenotype characterized by increased α-smooth muscle actin, TGF-β, collagen type I and TIMP-1 expression and diminished proteolytic MMP-13 expression. The CVI-HSC interaction can be disrupted with the monomeric α2(VI) and α3(VI) chains and abrogates the activating CVI effects. Further, functional relevant α3(VI)—derived 30 amino acid peptides lead to near-complete inhibition of the CVI effect. In conclusion, CVI serves as a potent mitogen and activating factor for HSCs. The antagonistic effects of the CVI monomeric chains and peptides point to linear peptide sequences that prevent activation of CVI receptors which may allow a targeted antifibrotic therapy.

1997 ◽  
Vol 273 (5) ◽  
pp. G1094-G1100 ◽  
Author(s):  
Kwan S. Lee ◽  
Howard B. Cottam ◽  
Karl Houglum ◽  
D. Bruce Wasson ◽  
Dennis Carson ◽  
...  

Activated, but not quiescent, hepatic stellate cells (lipocytes) have a high level of collagen type I and smooth muscle actin (SMA) gene expression. Therefore, stellate cell activation is a critical step in hepatic fibrosis. The mechanisms leading to stellate cell activation in vivo are unknown. The characteristic hepatic oxidative stress cascade induced in rats by CCl4markedly stimulated stellate cell entry into S phase, nuclear factor (NF)-κB activity, and c- myb expression. These changes were prevented by pentoxifylline, which also decreased CCl4-induced hepatic injury. As expected, cAMP-mediated phosphorylation of CREB-Ser133was induced in vivo in stellate cells by pentoxifylline but not by its metabolite 5, an N-1 carboxypropyl derivative, which lacks phosphodiesterase inhibitory activity. Stellate cell nuclear extracts from CCl4-treated, but not from control, animals formed a complex with the critical promoter E box of the α-SMA gene, which was disrupted by c- myb antibodies and competed with by c- myb cognate DNA. Treatment with pentoxifylline or metabolite 5 prevented the molecular abnormalities characteristic of stellate cell activation induced by CCl4. These results suggest that induction of c- myb plays an important role in the in vivo activation of stellate cells. Pentoxifylline blocks stellate cell activation in vivo independently of its inhibitory effects on phosphodiesterases by interfering with the oxidative stress cascade and the activation of NF-κB and c- myb.


2019 ◽  
Author(s):  
Ji Hoon Park ◽  
Janghyun Kim ◽  
So-Young Choi ◽  
Kiweon Cha ◽  
Heekyung Park ◽  
...  

AbstractActivated hepatic stellate cells (HSCs) play a key role in liver fibrosis and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative, retinol binding protein (RBP)-albumin domain III fusion protein (named R-III), inhibit HSC activation. Here, we investigate the mode of action of albumin and R-III. NF-κB in activated HSCs was evenly distributed in the cytoplasm, but albumin expression and R-III treatment (albumin/R-III) induced NF-κB nuclear translocation via retinoic acid (RA) sequestration, resulting in increased expression of interleukin-1β (IL-1β). In an IL-1β dependent manner, albumin/R-III inhibited Smad3 nuclear translocation via TAK1-, JNK-mediated Smad3 linker phosphorylation and decreased expression of Smad3 target genes, such as α-smooth muscle actin and collagen type I. Mutation of the Smad3 linker phosphorylation sites abolished R-III effects on Smad3. In conclusion, our data suggest that the anti-fibrotic effects of albumin/R-III are due to RA sequestration which downregulates RAR-mediated signaling and also TGF-β/Smad3 signaling. This mechanistic elucidation of albumin function in HSCs provides clues to understanding the frequent albumin mutations found in hepatocellular carcinoma.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1362 ◽  
Author(s):  
Wenwen Wang ◽  
Min Yan ◽  
Qiuhong Ji ◽  
Jinbiao Lu ◽  
Yuhua Ji ◽  
...  

Hepatic stellate cells (HSCs) activation is essential to the pathogenesis of liver fibrosis. Exploring drugs targeting HSC activation is a promising anti-fibrotic strategy. In the present study, we found suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, prominently suppressed the activation phenotype of a human hepatic stellate cell line—LX2. The production of collagen type I andα-smooth muscle actin (α-SMA) as well as the proliferation and migration of LX2 cells were significantly reduced by SAHA treatment. To determine the molecular mechanisms underlying this suppression, genome wild gene regulation by SAHA was determined by Affymetrix 1.0 human cDNA array. Upon SAHA treatment, the abundance of 331 genes was up-regulated and 173 genes was down-regulated in LX2 cells. Bioinformatic analyses of these altered genes highlighted the high mobility group box 1 (HMGB1) pathway was one of the most relevant pathways that contributed to SAHA induced suppression of HSCs activation. Further studies demonstrated the increased acetylation of intracellular HMGB1 in SAHA treated HSCs, and this increasing is most likely to be responsible for SAHA induced down-regulation of nuclear factor kappa B1 (NF-κB1) and is one of the main underlying mechanisms for the therapeutic effect of SAHA for liver fibrosis.


Gut ◽  
2011 ◽  
Vol 60 (Suppl 1) ◽  
pp. A242-A242
Author(s):  
S. Klironomos ◽  
G. Notas ◽  
O. Sfakianaki ◽  
I. Drigiannakis ◽  
M. Frangaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document