scholarly journals Abnormal Topological Organization of Sulcal Depth-Based Structural Covariance Networks in Parkinson's Disease

2021 ◽  
Vol 12 ◽  
Author(s):  
Erlei Wang ◽  
Yujing Jia ◽  
Yang Ya ◽  
Jin Xu ◽  
Chengjie Mao ◽  
...  

Recent research on Parkinson's disease (PD) has demonstrated the topological abnormalities of structural covariance networks (SCNs) using various morphometric features from structural magnetic resonance images (sMRI). However, the sulcal depth (SD)-based SCNs have not been investigated. In this study, we used SD to investigate the topological alterations of SCNs in 60 PD patients and 56 age- and gender-matched healthy controls (HC). SCNs were constructed by thresholding SD correlation matrices of 68 regions and analyzed using graph theoretical approaches. Compared with HC, PD patients showed increased normalized clustering coefficient and normalized path length, as well as a reorganization of degree-based and betweenness-based hubs (i.e., less frontal hubs). Moreover, the degree distribution analysis showed more high-degree nodes in PD patients. In addition, we also found the increased assortativity and reduced robustness under a random attack in PD patients compared to HC. Taken together, these findings indicated an abnormal topological organization of SD-based SCNs in PD patients, which may contribute in understanding the pathophysiology of PD at the network level.

2021 ◽  
Vol 13 ◽  
Author(s):  
Lin Zhang ◽  
Qin Shen ◽  
Haiyan Liao ◽  
Junli Li ◽  
Tianyu Wang ◽  
...  

There is increasing evidence to show that motor symptom lateralization in Parkinson’s disease (PD) is linked to non-motor features, progression, and prognosis of the disease. However, few studies have reported the difference in cortical complexity between patients with left-onset of PD (LPD) and right-onset of PD (RPD). This study aimed to investigate the differences in the cortical complexity between early-stage LPD and RPD. High-resolution T1-weighted magnetic resonance images of the brain were acquired in 24 patients with LPD, 34 patients with RPD, and 37 age- and sex-matched healthy controls (HCs). Cortical complexity including gyrification index, fractal dimension (FD), and sulcal depth was analyzed using surface-based morphometry via CAT12/SPM12. Familywise error (FWE) peak-level correction at p < 0.05 was performed for significance testing. In patients with RPD, we found decreased mean FD and mean sulcal depth in the banks of the left superior temporal sulcus (STS) compared with LPD and HCs. The mean FD in the left superior temporal gyrus (STG) was decreased in RPD compared with HCs. However, in patients with LPD, we did not identify significantly abnormal cortical complex change compared with HCs. Moreover, we observed that the mean FD in STG was negatively correlated with the 17-item Hamilton Depression Scale (HAMD) among the three groups. Our findings support the specific influence of asymmetrical motor symptoms in cortical complexity in early-stage PD and reveal that the banks of left STS and left STG might play a crucial role in RPD.


Author(s):  
Xueling Suo ◽  
Du Lei ◽  
Nannan Li ◽  
Wenbin Li ◽  
Graham J. Kemp ◽  
...  

AbstractWhile previous structural-covariance studies have an advanced understanding of brain alterations in Parkinson's disease (PD), brain–behavior relationships have not been examined at the individual level. This study investigated the topological organization of grey matter (GM) networks, their relation to disease severity, and their potential imaging diagnostic value in PD. Fifty-four early-stage PD patients and 54 healthy controls (HC) underwent structural T1-weighted magnetic resonance imaging. GM networks were constructed by estimating interregional similarity in the distributions of regional GM volume using the Kullback–Leibler divergence measure. Results were analyzed using graph theory and network-based statistics (NBS), and the relationship to disease severity was assessed. Exploratory support vector machine analyses were conducted to discriminate PD patients from HC and different motor subtypes. Compared with HC, GM networks in PD showed a higher clustering coefficient (P = 0.014) and local efficiency (P = 0.014). Locally, nodal centralities in PD were lower in postcentral gyrus and temporal-occipital regions, and higher in right superior frontal gyrus and left putamen. NBS analysis revealed decreased morphological connections in the sensorimotor and default mode networks and increased connections in the salience and frontoparietal networks in PD. Connection matrices and graph-based metrics allowed single-subject classification of PD and HC with significant accuracy of 73.1 and 72.7%, respectively, while graph-based metrics allowed single-subject classification of tremor-dominant and akinetic–rigid motor subtypes with significant accuracy of 67.0%. The topological organization of GM networks was disrupted in early-stage PD in a way that suggests greater segregation of information processing. There is potential for application to early imaging diagnosis.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Manan Binth Taj Noor ◽  
Nusrat Zerin Zenia ◽  
M Shamim Kaiser ◽  
Shamim Al Mamun ◽  
Mufti Mahmud

Abstract Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.


2016 ◽  
Vol 46 (4) ◽  
pp. 292-300 ◽  
Author(s):  
Lauren Hirsch ◽  
Nathalie Jette ◽  
Alexandra Frolkis ◽  
Thomas Steeves ◽  
Tamara Pringsheim

Background: Parkinson's disease (PD) is a common neurodegenerative disorder. Epidemiological studies on the incidence of PD are important to better understand the risk factors for PD and determine the condition's natural history. Objective: This systematic review and meta-analysis examine the incidence of PD and its variation by age and gender. Methods: We searched MEDLINE and EMBASE for epidemiologic studies of PD from 2001 to 2014, as a previously published systematic review included studies published until 2001. Data were analyzed separately for age group and gender, and meta-regression was used to determine whether a significant difference was present between groups. Results: Twenty-seven studies were included in the analysis. Meta-analysis of international studies showed rising incidence with age in both men and women. Significant heterogeneity was observed in the 80+ group, which may be explained by methodological differences between studies. While males had a higher incidence of PD in all age groups, this difference was only statistically significant for those in the age range 60-69 and 70-79 (p < 0.05). Conclusion: PD incidence generally increases with age, although it may stabilize in those who are 80+.


1997 ◽  
Vol 2 (3) ◽  
pp. E13 ◽  
Author(s):  
Ronald F. Young ◽  
Anne Shumway-Cook ◽  
Sandra S. Vermeulen ◽  
Peter Grimm ◽  
John Blasko ◽  
...  

Fifty-five patients underwent radiosurgical placement of lesions either in the thalamus (27 patients) or globus pallidus (28 patients) for treatment of movement disorders. Patients were evaluated pre- and postoperatively by a team of observers skilled in the assessment of gait and movement disorders who were blinded to the procedure performed. They were not associated with the surgical team and concomitantly and blindly also assessed a group of 11 control patients with Parkinson's disease who did not undergo any surgical procedures. All stereotactic lesions were made with the Leksell gamma unit using the 4-mm secondary collimator helmet and a single isocenter with dose maximums from 120 to 160 Gy. Clinical follow-up evaluation indicated that 88% of patients who underwent thalamotomy became tremor free or nearly tremor free. Statistically significant improvements in performance were noted in the independent assessments of Unified Parkinson's Disease Rating Scale (UPDRS) scores in the patients undergoing thalamotomy. Eighty-five and seven-tenths percent of patients undergoing pallidotomy who had exhibited levodopa-induced dyskinesias had total or near-total relief of that symptom. Clinical assessment indicated improvement of bradykinesia and rigidity in 64.3% of patients who underwent pallidotomy. Independent blinded assessments did not reveal statistically significant improvements in Hoehn and Yahr scores or UPDRS scores. On the other hand, 64.7% of patients showed improvements in subscores of the UPDRS, including activities of daily living (58%), total contralateral score (58%), and contralateral motor scores (47%). Ipsilateral total UPDRS and ipsilateral motor scores were both improved in 59% of patients. One (1.8%) of 55 patients experienced a homonymous hemianopsia 9 months after pallidotomy due to an unexpectedly large lesion. No other complications of any kind were seen. Follow-up neuroimaging confirmed correct lesion location in all patients, with a mean maximum deviation from the planned target of 1 mm in the vertical axis. Measurements of lesions at regular interals on postoperative magnetic resonance images demonstrated considerable variability in lesion volumes. The safety and efficacy of functional lesions made with the gamma knife appear to be similar to those made with the assistance of electrophysiological guidance with open functional stereotactic procedures. Functional lesions may be made safely and accurately using gamma knife radiosurgical techniques. The efficacy is equivalent to that reported for open techniques that use radiofrequency lesioning methods with electrophysiological guidance. Complications are very infrequent with the radiosurgical method. The use of functional radiosurgical lesioning to treat movement disorders is particularly attractive in older patients and those with major systemic diseases or coagulopathies; its use in the general movement disorder population seems reasonable as well.


2017 ◽  
Vol 15 ◽  
pp. 587-593 ◽  
Author(s):  
Laura J. de Schipper ◽  
Jeroen van der Grond ◽  
Johan Marinus ◽  
Johanna M.L. Henselmans ◽  
Jacobus J. van Hilten

2012 ◽  
Vol 70 (11) ◽  
pp. 847-851 ◽  
Author(s):  
Luciana Ulhôa Guedes ◽  
Juliana Melo Rodrigues ◽  
Aline Andrioni Fernandes ◽  
Francisco E. Cardoso ◽  
Verônica Franco Parreira

OBJECTIVE: To investigate the maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) in patients with Parkinson's disease (PD) during the on and off periods of levodopa and to compare with healthy controls. METHODS: Twenty-six patients were analyzed with Hoehn and Yahr scores (2-3) and 26 age and gender matched-controls. Statistical analysis was performed with Student's t-test for paired and independent samples. RESULTS: MIP and MEP values in patients were significantly lower than the values obtained in controls both for off and on stages -excepted for MIP in women (p=0.28). For patients with PD, the studied parameters did not differ between stages on and off, with the exception of MEP in women (p=0.00). CONCLUSIONS: Patients with PD have respiratory pressure lower than controls, even in early stages of the disease, and dopamine replacement has little impact over these respiratory pressures. These findings suggest that respiratory changes in PD may be unrelated to dopaminergic dysfunction.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Dong Hwan Ho ◽  
Sanghak Yi ◽  
Hyemyung Seo ◽  
Ilhong Son ◽  
Wongi Seol

Parkinson’s disease (PD) is a difficult disease to diagnose although it is the second most common neurodegenerative disease. Recent studies show that exosome isolated from urine contains LRRK2 or DJ-1, proteins whose mutations cause PD. To investigate a potential use for urine exosomes as a tool for PD diagnosis, we compared levels of LRRK2,α-synuclein, and DJ-1 in urine exosomes isolated from Korean PD patients and non-PD controls. LRRK2 and DJ-1, but notα-synuclein, were detected in the urine exosome samples, as reported previously. We initially could not detect any significant difference in these protein levels between the patient and the control groups. However, when age, disease duration, L-dopa daily dose, and gender were considered as analytical parameters, LRRK2 and DJ-1 protein levels showed clear gender-dependent differences. In addition, DJ-1 level was significantly higher (1.7-fold) in male patients with PD than that in male non-PD controls and increased in an age-dependent manner in male patients with PD. Our observation might provide a clue to lead to a novel biomarker for PD diagnosis, at least in males.


Sign in / Sign up

Export Citation Format

Share Document