scholarly journals Editorial: Understanding the Importance of Temporal Coupling of Neural Activities in Information Processing Underlying Action and Perception

2021 ◽  
Vol 15 ◽  
Author(s):  
Daya Shankar Gupta ◽  
Andreas Bahmer
2005 ◽  
Vol 17 (10) ◽  
pp. 2139-2175 ◽  
Author(s):  
Naoki Masuda ◽  
Brent Doiron ◽  
André Longtin ◽  
Kazuyuki Aihara

Oscillatory and synchronized neural activities are commonly found in the brain, and evidence suggests that many of them are caused by global feedback. Their mechanisms and roles in information processing have been discussed often using purely feedforward networks or recurrent networks with constant inputs. On the other hand, real recurrent neural networks are abundant and continually receive information-rich inputs from the outside environment or other parts of the brain. We examine how feedforward networks of spiking neurons with delayed global feedback process information about temporally changing inputs. We show that the network behavior is more synchronous as well as more correlated with and phase-locked to the stimulus when the stimulus frequency is resonant with the inherent frequency of the neuron or that of the network oscillation generated by the feedback architecture. The two eigenmodes have distinct dynamical characteristics, which are supported by numerical simulations and by analytical arguments based on frequency response and bifurcation theory. This distinction is similar to the class I versus class II classification of single neurons according to the bifurcation from quiescence to periodic firing, and the two modes depend differently on system parameters. These two mechanisms may be associated with different types of information processing.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 365 ◽  
Author(s):  
Daya Gupta ◽  
Andreas Bahmer

Perception and motor interaction with physical surroundings can be analyzed by the changes in probability laws governing two possible outcomes of neuronal activity, namely the presence or absence of spikes (binary states). Perception and motor interaction with the physical environment are partly accounted for by a reduction in entropy within the probability distributions of binary states of neurons in distributed neural circuits, given the knowledge about the characteristics of stimuli in physical surroundings. This reduction in the total entropy of multiple pairs of circuits in networks, by an amount equal to the increase of mutual information, occurs as sensory information is processed successively from lower to higher cortical areas or between different areas at the same hierarchical level, but belonging to different networks. The increase in mutual information is partly accounted for by temporal coupling as well as synaptic connections as proposed by Bahmer and Gupta (Front. Neurosci. 2018). We propose that robust increases in mutual information, measuring the association between the characteristics of sensory inputs’ and neural circuits’ connectivity patterns, are partly responsible for perception and successful motor interactions with physical surroundings. The increase in mutual information, given the knowledge about environmental sensory stimuli and the type of motor response produced, is responsible for the coupling between action and perception. In addition, the processing of sensory inputs within neural circuits, with no prior knowledge of the occurrence of a sensory stimulus, increases Shannon information. Consequently, the increase in surprise serves to increase the evidence of the sensory model of physical surroundings


2016 ◽  
Vol 39 ◽  
Author(s):  
Giosuè Baggio ◽  
Carmelo M. Vicario

AbstractWe agree with Christiansen & Chater (C&C) that language processing and acquisition are tightly constrained by the limits of sensory and memory systems. However, the human brain supports a range of cognitive functions that mitigate the effects of information processing bottlenecks. The language system is partly organised around these moderating factors, not just around restrictions on storage and computation.


2004 ◽  
Vol 9 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Patrizia Vermigli ◽  
Alessandro Toni

The present research analyzes the relationship between attachment styles at an adult age and field dependence in order to identify possible individual differences in information processing. The “Experience in Close Relationships” test of Brennan et al. was administered to a sample of 380 individuals (160 males, 220 females), while a subsample of 122 subjects was given the Embedded Figure Test to measure field dependence. Confirming the starting hypothesis, the results have shown that individuals with different attachment styles have a different way of perceiving the figure against the background. Ambivalent and avoidant individuals lie at the two extremes of the same dimension while secure individuals occupy the central part. Significant differences also emerged between males and females.


2006 ◽  
Vol 27 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Ana-Maria Vranceanu ◽  
Linda C. Gallo ◽  
Laura M. Bogart

The present study investigated whether a social information processing bias contributes to the inverse association between trait hostility and perceived social support. A sample of 104 undergraduates (50 men) completed a measure of hostility and rated videotaped interactions in which a speaker disclosed a problem while a listener reacted ambiguously. Results showed that hostile persons rated listeners as less friendly and socially supportive across six conversations, although the nature of the hostility effect varied by sex, target rated, and manner in which support was assessed. Hostility and target interactively impacted ratings of support and affiliation only for men. At least in part, a social information processing bias could contribute to hostile persons' perceptions of their social networks.


2012 ◽  
Vol 33 (4) ◽  
pp. 227-236 ◽  
Author(s):  
Agata Wytykowska

In Strelau’s theory of temperament (RTT), there are four types of temperament, differentiated according to low vs. high stimulation processing capacity and to the level of their internal harmonization. The type of temperament is considered harmonized when the constellation of all temperamental traits is internally matched to the need for stimulation, which is related to effectiveness of stimulation processing. In nonharmonized temperamental structure, an internal mismatch is observed which is linked to ineffectiveness of stimulation processing. The three studies presented here investigated the relationship between temperamental structures and the strategies of categorization. Results revealed that subjects with harmonized structures efficiently control the level of stimulation stemming from the cognitive activity, independent of the affective value of situation. The pattern of results attained for subjects with nonharmonized structures was more ambiguous: They were as good as subjects with harmonized structures at adjusting the way of information processing to their stimulation processing capacities, but they also proved to be more responsive to the affective character of stimulation (positive or negative mood).


Sign in / Sign up

Export Citation Format

Share Document