scholarly journals Multiple-Timescale Neural Networks: Generation of History-Dependent Sequences and Inference Through Autonomous Bifurcations

2021 ◽  
Vol 15 ◽  
Author(s):  
Tomoki Kurikawa ◽  
Kunihiko Kaneko

Sequential transitions between metastable states are ubiquitously observed in the neural system and underlying various cognitive functions such as perception and decision making. Although a number of studies with asymmetric Hebbian connectivity have investigated how such sequences are generated, the focused sequences are simple Markov ones. On the other hand, fine recurrent neural networks trained with supervised machine learning methods can generate complex non-Markov sequences, but these sequences are vulnerable against perturbations and such learning methods are biologically implausible. How stable and complex sequences are generated in the neural system still remains unclear. We have developed a neural network with fast and slow dynamics, which are inspired by the hierarchy of timescales on neural activities in the cortex. The slow dynamics store the history of inputs and outputs and affect the fast dynamics depending on the stored history. We show that the learning rule that requires only local information can form the network generating the complex and robust sequences in the fast dynamics. The slow dynamics work as bifurcation parameters for the fast one, wherein they stabilize the next pattern of the sequence before the current pattern is destabilized depending on the previous patterns. This co-existence period leads to the stable transition between the current and the next pattern in the non-Markov sequence. We further find that timescale balance is critical to the co-existence period. Our study provides a novel mechanism generating robust complex sequences with multiple timescales. Considering the multiple timescales are widely observed, the mechanism advances our understanding of temporal processing in the neural system.

Author(s):  
Emeric Sibieude ◽  
Akash Khandelwal ◽  
Pascal Girard ◽  
Jan S. Hesthaven ◽  
Nadia Terranova

AbstractA fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 223
Author(s):  
Yen-Ling Tai ◽  
Shin-Jhe Huang ◽  
Chien-Chang Chen ◽  
Henry Horng-Shing Lu

Nowadays, deep learning methods with high structural complexity and flexibility inevitably lean on the computational capability of the hardware. A platform with high-performance GPUs and large amounts of memory could support neural networks having large numbers of layers and kernels. However, naively pursuing high-cost hardware would probably drag the technical development of deep learning methods. In the article, we thus establish a new preprocessing method to reduce the computational complexity of the neural networks. Inspired by the band theory of solids in physics, we map the image space into a noninteraction physical system isomorphically and then treat image voxels as particle-like clusters. Then, we reconstruct the Fermi–Dirac distribution to be a correction function for the normalization of the voxel intensity and as a filter of insignificant cluster components. The filtered clusters at the circumstance can delineate the morphological heterogeneity of the image voxels. We used the BraTS 2019 datasets and the dimensional fusion U-net for the algorithmic validation, and the proposed Fermi–Dirac correction function exhibited comparable performance to other employed preprocessing methods. By comparing to the conventional z-score normalization function and the Gamma correction function, the proposed algorithm can save at least 38% of computational time cost under a low-cost hardware architecture. Even though the correction function of global histogram equalization has the lowest computational time among the employed correction functions, the proposed Fermi–Dirac correction function exhibits better capabilities of image augmentation and segmentation.


2021 ◽  
Vol 14 ◽  
pp. 175628642110034
Author(s):  
Caspar B. Seitz ◽  
Falk Steffen ◽  
Muthuraman Muthuraman ◽  
Timo Uphaus ◽  
Julia Krämer ◽  
...  

Background: Serum neurofilament light chain (sNfL) and distinct intra-retinal layers are both promising biomarkers of neuro-axonal injury in multiple sclerosis (MS). We aimed to unravel the association of both markers in early MS, having identified that neurofilament has a distinct immunohistochemical expression pattern among intra-retinal layers. Methods: Three-dimensional (3D) spectral domain macular optical coherence tomography scans and sNfL levels were investigated in 156 early MS patients (female/male: 109/47, mean age: 33.3 ± 9.5 years, mean disease duration: 2.0 ± 3.3 years). Out of the whole cohort, 110 patients had no history of optic neuritis (NHON) and 46 patients had a previous history of optic neuritis (HON). In addition, a subgroup of patients ( n = 38) was studied longitudinally over 2 years. Support vector machine analysis was applied to test a regression model for significant changes. Results: In our cohort, HON patients had a thinner outer plexiform layer (OPL) volume compared to NHON patients ( B = −0.016, SE = 0.006, p = 0.013). Higher sNfL levels were significantly associated with thinner OPL volumes in HON patients ( B = −6.734, SE = 2.514, p = 0.011). This finding was corroborated in the longitudinal subanalysis by the association of higher sNfL levels with OPL atrophy ( B = 5.974, SE = 2.420, p = 0.019). sNfL levels were 75.7% accurate at predicting OPL volume in the supervised machine learning. Conclusions: In summary, sNfL levels were a good predictor of future outer retinal thinning in MS. Changes within the neurofilament-rich OPL could be considered as an additional retinal marker linked to MS neurodegeneration.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 598.2-598
Author(s):  
E. Myasoedova ◽  
A. Athreya ◽  
C. S. Crowson ◽  
R. Weinshilboum ◽  
L. Wang ◽  
...  

Background:Methotrexate (MTX) is the most common anchor drug for rheumatoid arthritis (RA), but the risk of missing the opportunity for early effective treatment with alternative medications is substantial given the delayed onset of MTX action and 30-40% inadequate response rate. There is a compelling need to accurately predicting MTX response prior to treatment initiation, which allows for effectively identifying patients at RA onset who are likely to respond to MTX.Objectives:To test the ability of machine learning approaches with clinical and genomic biomarkers to predict MTX response with replications in independent samples.Methods:Age, sex, clinical, serological and genome-wide association study (GWAS) data on patients with early RA of European ancestry from 647 patients (336 recruited in United Kingdom [UK]; 307 recruited across Europe; 70% female; 72% rheumatoid factor [RF] positive; mean age 54 years; mean baseline Disease Activity Score with 28-joint count [DAS28] 5.65) of the PhArmacogenetics of Methotrexate in RA (PAMERA) consortium was used in this study. The genomics data comprised 160 genome-wide significant single nucleotide polymorphisms (SNPs) with p<1×10-5 associated with risk of RA and MTX metabolism. DAS28 score was available at baseline and 3-month follow-up visit. Response to MTX monotherapy at the dose of ≥15 mg/week was defined as good or moderate by the EULAR response criteria at 3 months’ follow up visit. Supervised machine-learning methods were trained with 5-repeats and 10-fold cross-validation using data from PAMERA’s 336 UK patients. Class imbalance (higher % of MTX responders) in training was accounted by using simulated minority oversampling technique. Prediction performance was validated in PAMERA’s 307 European patients (not used in training).Results:Age, sex, RF positivity and baseline DAS28 data predicted MTX response with 58% accuracy of UK and European patients (p = 0.7). However, supervised machine-learning methods that combined demographics, RF positivity, baseline DAS28 and genomic SNPs predicted EULAR response at 3 months with area under the receiver operating curve (AUC) of 0.83 (p = 0.051) in UK patients, and achieved prediction accuracies (fraction of correctly predicted outcomes) of 76.2% (p = 0.054) in the European patients, with sensitivity of 72% and specificity of 77%. The addition of genomic data improved the predictive accuracies of MTX response by 19% and achieved cross-site replication. Baseline DAS28 scores and following SNPs rs12446816, rs13385025, rs113798271, and rs2372536 were among the top predictors of MTX response.Conclusion:Pharmacogenomic biomarkers combined with DAS28 scores predicted MTX response in patients with early RA more reliably than using demographics and DAS28 scores alone. Using pharmacogenomics biomarkers for identification of MTX responders at early stages of RA may help to guide effective RA treatment choices, including timely escalation of RA therapies. Further studies on personalized prediction of response to MTX and other anti-rheumatic treatments are warranted to optimize control of RA disease and improve outcomes in patients with RA.Disclosure of Interests:Elena Myasoedova: None declared, Arjun Athreya: None declared, Cynthia S. Crowson Grant/research support from: Pfizer research grant, Richard Weinshilboum Shareholder of: co-founder and stockholder in OneOme, Liewei Wang: None declared, Eric Matteson Grant/research support from: Pfizer, Consultant of: Boehringer Ingelheim, Gilead, TympoBio, Arena Pharmaceuticals, Speakers bureau: Simply Speaking


2021 ◽  
Vol 13 (5) ◽  
pp. 974
Author(s):  
Lorena Alves Santos ◽  
Karine Ferreira ◽  
Michelle Picoli ◽  
Gilberto Camara ◽  
Raul Zurita-Milla ◽  
...  

The use of satellite image time series analysis and machine learning methods brings new opportunities and challenges for land use and cover changes (LUCC) mapping over large areas. One of these challenges is the need for samples that properly represent the high variability of land used and cover classes over large areas to train supervised machine learning methods and to produce accurate LUCC maps. This paper addresses this challenge and presents a method to identify spatiotemporal patterns in land use and cover samples to infer subclasses through the phenological and spectral information provided by satellite image time series. The proposed method uses self-organizing maps (SOMs) to reduce the data dimensionality creating primary clusters. From these primary clusters, it uses hierarchical clustering to create subclusters that recognize intra-class variability intrinsic to different regions and periods, mainly in large areas and multiple years. To show how the method works, we use MODIS image time series associated to samples of cropland and pasture classes over the Cerrado biome in Brazil. The results prove that the proposed method is suitable for identifying spatiotemporal patterns in land use and cover samples that can be used to infer subclasses, mainly for crop-types.


Data & Policy ◽  
2021 ◽  
Vol 3 ◽  
Author(s):  
Munisamy Gopinath ◽  
Feras A. Batarseh ◽  
Jayson Beckman ◽  
Ajay Kulkarni ◽  
Sei Jeong

Abstract Focusing on seven major agricultural commodities with a long history of trade, this study employs data-driven analytics to decipher patterns of trade, namely using supervised machine learning (ML), as well as neural networks. The supervised ML and neural network techniques are trained on data until 2010 and 2014, respectively. Results show the high relevance of ML models to forecasting trade patterns in near- and long-term relative to traditional approaches, which are often subjective assessments or time-series projections. While supervised ML techniques quantified key economic factors underlying agricultural trade flows, neural network approaches provide better fits over the long term.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nasser Assery ◽  
Yuan (Dorothy) Xiaohong ◽  
Qu Xiuli ◽  
Roy Kaushik ◽  
Sultan Almalki

Purpose This study aims to propose an unsupervised learning model to evaluate the credibility of disaster-related Twitter data and present a performance comparison with commonly used supervised machine learning models. Design/methodology/approach First historical tweets on two recent hurricane events are collected via Twitter API. Then a credibility scoring system is implemented in which the tweet features are analyzed to give a credibility score and credibility label to the tweet. After that, supervised machine learning classification is implemented using various classification algorithms and their performances are compared. Findings The proposed unsupervised learning model could enhance the emergency response by providing a fast way to determine the credibility of disaster-related tweets. Additionally, the comparison of the supervised classification models reveals that the Random Forest classifier performs significantly better than the SVM and Logistic Regression classifiers in classifying the credibility of disaster-related tweets. Originality/value In this paper, an unsupervised 10-point scoring model is proposed to evaluate the tweets’ credibility based on the user-based and content-based features. This technique could be used to evaluate the credibility of disaster-related tweets on future hurricanes and would have the potential to enhance emergency response during critical events. The comparative study of different supervised learning methods has revealed effective supervised learning methods for evaluating the credibility of Tweeter data.


Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Human skin detection is an important and challenging problem in computer vision. Skin detection can be used as the first phase in face detection when using color images. The differences in illumination and ranges of skin colors have made skin detection a challenging task. Gaussian model, rule based methods, and artificial neural networks are methods that have been used for human skin color detection. Deep learning methods are new techniques in learning that have shown improved classification power compared to neural networks. In this paper the authors use deep learning methods in order to enhance the capabilities of skin detection algorithms. Several experiments have been performed using auto encoders and different color spaces. The proposed technique is evaluated compare with other available methods in this domain using two color image databases. The results show that skin detection utilizing deep learning has better results compared to other methods such as rule-based, Gaussian model and feed forward neural network.


Sign in / Sign up

Export Citation Format

Share Document