scholarly journals From Genotype to Phenotype: Expanding the Clinical Spectrum of CACNA1A Variants in the Era of Next Generation Sequencing

2021 ◽  
Vol 12 ◽  
Author(s):  
Elisabetta Indelicato ◽  
Sylvia Boesch

Ion channel dysfunction is a key pathological substrate of episodic neurological disorders. A classical gene associated to paroxysmal movement disorders is CACNA1A, which codes for the pore-forming subunit of the neuronal calcium channel P/Q. Non-polyglutamine CACNA1A variants underlie familial hemiplegic ataxia type 1 (FHM1) and episodic ataxia type 2 (EA2). Classical paroxysmal manifestations of FHM1 are migraine attacks preceded by motor aura consisting of hemiparesis, aphasia, and disturbances of consciousness until coma. Patients with EA2 suffer of recurrent episodes of vertigo, unbalance, diplopia, and vomiting. Beyond these typical presentations, several reports highlighted manifold clinical features associated with P/Q channelopathies, from chronic progressive cerebellar ataxia to epilepsy and psychiatric disturbances. These manifestations may often outlast the burden of classical episodic symptoms leading to pitfalls in the diagnostic work-up. Lately, the spreading of next generation sequencing techniques linked de novo CACNA1A variants to an even broader phenotypic spectrum including early developmental delay, autism spectrum disorders, epileptic encephalopathy, and early onset paroxysmal dystonia. The age-dependency represents a striking new aspect of these phenotypes und highlights a pivotal role for P/Q channels in the development of the central nervous system in a defined time window. While several reviews addressed the clinical presentation and treatment of FHM1 and EA2, an overview of the newly described age-dependent manifestations is lacking. In this Mini-Review we present a clinical update, delineate genotype-phenotype correlations as well as summarize evidence on the pathophysiological mechanisms underlying the expanded phenotype associated with CACNA1A variants.

Author(s):  
Maheen Nisar

Rapid progress is being made in the development of next-generation sequencing (NGS) technologies, allowing repeated findings of new genes and a more in-depth analysis of genetic polymorphisms behind the pathogenesis of a disease. In a field such as psychiatry, characteristic of vague and highly variable somatic manifestations, these technologies have brought great advances towards diagnosing various psychiatric and mental disorders, identifying high-risk individuals and towards more effective corresponding treatment. Psychiatry has the difficult task of diagnosing and treating mental disorders without being able to invariably and definitively establish the properties of its illness. This calls for diagnostic technologies that go beyond the traditional ways of gene manipulation to more advanced methods mainly focusing on new gene polymorphism discoveries, one of them being NGS. This enables the identification of hundreds of common and rare genetic variations contributing to behavioral and psychological conditions. Clinical NGS has been useful to detect copy number and single nucleotide variants and to identify structural rearrangements that have been challenging for standard bioinformatics algorithms. The main objective of this article is to review the recent applications of NGS in the diagnosis of major psychiatric disorders, and hence gauge the extent of its impact in the field. A comprehensive PubMed search was conducted and papers published from 2013-2018 were included, using the keywords, “schizophrenia” or “bipolar disorder” or “depressive disorder” or “attention deficit disorder” or “autism spectrum disorder” and “next-generation sequencing”


Author(s):  
Takuya Shimizu ◽  
Tadakazu Kondo ◽  
Yasuhito Nannya ◽  
Mizuki Watanabe ◽  
Toshio Kitawaki ◽  
...  

2014 ◽  
Vol 12 (S1) ◽  
pp. S83-S86 ◽  
Author(s):  
Yul-Kyun Ahn ◽  
Swati Tripathi ◽  
Young-Il Cho ◽  
Jeong-Ho Kim ◽  
Hye-Eun Lee ◽  
...  

Next-generation sequencing technique has been known as a useful tool for de novo transcriptome assembly, functional annotation of genes and identification of molecular markers. This study was carried out to mine molecular markers from de novo assembled transcriptomes of four chilli pepper varieties, the highly pungent ‘Saengryeg 211’ and non-pungent ‘Saengryeg 213’ and variably pigmented ‘Mandarin’ and ‘Blackcluster’. Pyrosequencing of the complementary DNA library resulted in 361,671, 274,269, 279,221, and 316,357 raw reads, which were assembled in 23,607, 19,894, 18,340 and 20,357 contigs, for the four varieties, respectively. Detailed sequence variant analysis identified numerous potential single-nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) for all the varieties for which the primers were designed. The transcriptome information and SNP/SSR markers generated in this study provide valuable resources for high-density molecular genetic mapping in chilli pepper and Quantitative trait loci analysis related to fruit qualities. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies.


BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Louis T. Dang ◽  
Markus Tondl ◽  
Man Ho H. Chiu ◽  
Jerico Revote ◽  
Benedict Paten ◽  
...  

2019 ◽  
Vol 85 ◽  
pp. S69-S70
Author(s):  
A. Bolaman ◽  
İ. Erdoğdu ◽  
A. Turgutkaya ◽  
C. Selim ◽  
A. Eroglu Kucukerdiler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document