scholarly journals Globus Pallidus Internus Deep Brain Stimulation Using Frame-Based vs. Frameless Stereotaxy in Dystonia: A Single-Center Experience

2021 ◽  
Vol 12 ◽  
Author(s):  
Roberto Eleopra ◽  
Sara Rinaldo ◽  
Grazia Devigili ◽  
Massimo Mondani ◽  
Stanislao D'Auria ◽  
...  

Objective: Bilateral globus pallidus internus deep brain stimulation (GPi-DBS) is an established and effective therapy for primary refractory dystonia. However, the comparison of frameless vs. frame-based DBS surgery technique is still controversial. This retrospective study aims to compare the clinical outcome of two GPi-DBS surgical techniques for patients affected by primary generalized or multi-segmental dystonia.Methods: For lead's stereotaxic placement, 10 patients underwent frame-based surgery and the other 10 subjects DBS surgery with a frameless technique. Clinical features were evaluated at baseline and 6 and 12 months after surgery by means of the Burke–Fahn–Marsden Dystonia Rating Scale.Results: Frame-based GPi-DBS and frameless stereotaxic group revealed a comparable clinical outcome with no surgical complications.Conclusions: Frameless technique is safe and well-tolerated by patients and showed similar effectiveness of the frame-based stereotaxic surgery during GPi-DBS for primary dystonia. Notably, it could be a valid alternative solution because of the great advantage in improving the patient's discomfort during awake surgery.

2021 ◽  
Vol 15 ◽  
Author(s):  
Kantharuby Tambirajoo ◽  
Luciano Furlanetti ◽  
Michael Samuel ◽  
Keyoumars Ashkan

IntroductionDystonic opisthotonus is defined as a backward arching of the neck and trunk, which ranges in severity from mild backward jerks to life-threatening prolonged severe muscular spasms. It can be associated with generalized dystonic syndromes or, rarely, present as a form of axial truncal dystonia. The etiologies vary from idiopathic, genetic, tardive, hereditary-degenerative, or associated with parkinsonism. We report clinical cases of dystonic opisthotonus associated with adult-onset dystonic syndromes, that benefitted from globus pallidus internus (GPi) deep brain stimulation (DBS).MethodsClinical data from patients with dystonic syndromes who underwent comprehensive medical review, multidisciplinary assessment, and tailored medical and neurosurgical managements were prospectively analyzed. Quantification of dystonia severity pre- and postoperatively was performed using the Burke-Fahn-Marsden Dystonia Rating Scale and quantification of overall pain severity was performed using the Visual Analog Scale.ResultsThree male patients, with age of onset of the dystonic symptoms ranging from 32 to 51 years old, were included. Tardive dystonia, adult-onset dystonia-parkinsonism and adult-onset idiopathic axial dystonia were the etiologies identified. Clinical investigation and management were tailored according to the complexity of the individual presentations. Although they shared common clinical features of adult-onset dystonia, disabling dystonic opisthotonus, refractory to medical management, was the main indication for GPi-DBS in all patients presented. The severity of axial dystonia ranged from disturbance of daily function to life-threatening truncal distortion. All three patients underwent bilateral GPi DBS at a mean age of 52 years (range 48–55 years), after mean duration of symptoms prior to DBS of 10.7 years (range 4–16 years). All patients showed a rapid and sustained clinical improvement of their symptoms, notably of the dystonic opisthotonos, at postoperative follow-up ranging from 20 to 175 months. In some, the ability to resume activities of daily living and reintegration into the society was remarkable.ConclusionAdult-onset dystonic syndromes predominantly presenting with dystonic opisthotonus are relatively rare. The specific nature of dystonic opisthotonus remains a treatment challenge, and thorough investigation of this highly disabling condition with varying etiologies is often necessary. Although patients may be refractory to medical management and botulinum toxin injection, Globus pallidus stimulation timed and tailored provided symptomatic control in this cohort and may be considered in other carefully selected cases.


2008 ◽  
Vol 62 (suppl_1) ◽  
pp. ONS217-ONS225 ◽  
Author(s):  
Clement Hamani ◽  
Elena Moro ◽  
Cindy Zadikoff ◽  
Yu-Yan Poon ◽  
Andres M. Lozano

Abstract Objective: Deep brain stimulation of the globus pallidus internus has been used for the treatment of various forms of dystonia, but the factors influencing postoperative outcomes remain unknown. We compared the location of the contacts being used for stimulation (active contacts) in patients with cervical dystonia, generalized dystonia, and Parkinson's disease and correlated the results with clinical outcome. Methods: Postoperative magnetic resonance scans of 13 patients with cervical dystonia, six patients with generalized dystonia, and five patients with Parkinson's disease who underwent globus pallidus internus deep brain stimulation were analyzed. We assessed the location of the active contacts relative to the midcommisural point and in relation to the anteroposterior and mediolateral boundaries of the pallidum. Postoperative outcome was measured with the Toronto Western Spasmodic Torticollis Rating Scale (for cervical dystonia) and the Burke-Fahn-Marsden Dystonia Rating Scale (for generalized dystonia) during the last follow-up. Results: We found that the location of the active contacts relative to the midcom-misural point and the internal boundaries of the pallidum was similar across the groups. In our series, the contacts used for stimulation were clustered in the posterolateral region of the pallidum. Within that region, we found no correlation between the location of the contacts and postoperative outcome. Conclusion: The location of the active contacts used for globus pallidus internus deep brain stimulation was similar in patients with cervical dystonia, generalized dystonia, and Parkinson's disease.


2020 ◽  
Vol 98 (6) ◽  
pp. 399-403
Author(s):  
Hideo Mure ◽  
Naoto Toyoda ◽  
Ryoma Morigaki ◽  
Koji Fujita ◽  
Yasushi Takagi

<b><i>Background:</i></b> The Lance-Adams syndrome (LAS) is a myoclonus syndrome caused by hypoxic-ischemic encephalopathy. LAS cases could be refractory to first-line medications, and the neuronal mechanism underlying LAS pathology remains unknown. <b><i>Objectives:</i></b> To describe a patient with LAS who underwent bilateral globus pallidus internus (GPi) stimulation and discuss the pathophysiology of LAS with intraoperative electrophysiological findings. <b><i>Patients:</i></b> A 79-year-old woman presented with a history of cardiopulmonary arrest due to internal carotid artery rupture following carotid endarterectomy after successful cardiopulmonary resuscitation. However, within 1 month, the patient developed sensory stimulation-induced myoclonus in her face and extremities. Because her myoclonic symptoms were refractory to pharmacotherapy, deep brain stimulation of the GPi was performed 1 year after the hypoxic attack. <b><i>Results:</i></b> Continuous bilateral GPi stimulation with optimal parameter settings remarkably improved the patient’s myoclonic symptoms. At the 2-year follow-up, her Unified Myoclonus Rating Scale score decreased from 90 to 24. In addition, we observed burst firing and interburst pause patterns on intraoperative microelectrode recordings of the bilateral GPi and stimulated this area as the therapeutic target. <b><i>Conclusion:</i></b> Our results show that impairment in the basal ganglion circuitry might be involved in the pathogenesis of myoclonus in patients with LAS.


Author(s):  
Ailish Coblentz ◽  
Gavin J. B. Elias ◽  
Alexandre Boutet ◽  
Jurgen Germann ◽  
Musleh Algarni ◽  
...  

OBJECTIVEThe objective of this study was to report the authors’ experience with deep brain stimulation (DBS) of the internal globus pallidus (GPi) as a treatment for pediatric dystonia, and to elucidate substrates underlying clinical outcome using state-of-the-art neuroimaging techniques.METHODSA retrospective analysis was conducted in 11 pediatric patients (6 girls and 5 boys, mean age 12 ± 4 years) with medically refractory dystonia who underwent GPi-DBS implantation between June 2009 and September 2017. Using pre- and postoperative MRI, volumes of tissue activated were modeled and weighted by clinical outcome to identify brain regions associated with clinical outcome. Functional and structural networks associated with clinical benefits were also determined using large-scale normative data sets.RESULTSA total of 21 implanted leads were analyzed in 11 patients. The average follow-up duration was 19 ± 20 months (median 5 months). Using a 7-point clinical rating scale, 10 patients showed response to treatment, as defined by scores < 3. The mean improvement in the Burke-Fahn-Marsden Dystonia Rating Scale motor score was 40% ± 23%. The probabilistic map of efficacy showed that the voxel cluster most associated with clinical improvement was located at the posterior aspect of the GPi, comparatively posterior and superior to the coordinates of the classic GPi target. Strong functional and structural connectivity was evident between the probabilistic map and areas such as the precentral and postcentral gyri, parietooccipital cortex, and brainstem.CONCLUSIONSThis study reported on a series of pediatric patients with dystonia in whom GPi-DBS resulted in variable clinical benefit and described a clinically favorable stimulation site for this cohort, as well as its structural and functional connectivity. This information could be valuable for improving surgical planning, simplifying programming, and further informing disease pathophysiology.


2019 ◽  
Vol 132 ◽  
pp. 368-370
Author(s):  
Somnath V. Ganapa ◽  
Margish D. Ramani ◽  
Oladotun O. Ebunlomo ◽  
Raphia K. Rahman ◽  
Yehuda Herschman ◽  
...  

Neurosurgery ◽  
2019 ◽  
Author(s):  
Amit Azriel ◽  
Sarah Farrand ◽  
Maria Di Biase ◽  
Andrew Zalesky ◽  
Elaine Lui ◽  
...  

AbstractBACKGROUND AND IMPORTANCEObsessive-compulsive disorder (OCD) is a disabling psychiatric disorder, mainly treated with psychotherapy and pharmacotherapy. Surgical intervention may be appropriate for patients with treatment-refractory OCD. Deep brain stimulation (DBS) is an alternative for previously common ablative surgical procedures. Tractography has been proposed as a method for individualizing DBS treatment and may have the potential to improve efficacy.CLINICAL PRESENTATIONWe present a patient with treatment-refractory OCD previously treated with bilateral leucotomies, who underwent DBS surgery with targeting informed by tractography. Preoperative tractography to identify suitable DBS targets was undertaken. Structural images were also utilized for standard stereotactic surgical planning. The anteromedial globus pallidus internus (amGPi) was chosen as the target bilaterally after consideration of white matter projections to frontal cortical regions and neurosurgical approach. Bilateral amGPi DBS surgery was undertaken without adverse events. At 16-mo follow-up, there was a 48.5% reduction in OCD symptom severity as measured by the Yale-Brown Obsessive Compulsive Scale.CONCLUSIONThe amGPi can be a successful DBS target for OCD. This is the first known case to report on DBS surgery postleucotomies for OCD and highlights the utility of tractography for surgical planning in OCD.


Author(s):  
Carla Piano ◽  
Francesco Bove ◽  
Delia Mulas ◽  
Anna Rita Bentivoglio ◽  
Beatrice Cioni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document