scholarly journals Where We Mentalize: Main Cortical Areas Involved in Mentalization

2021 ◽  
Vol 12 ◽  
Author(s):  
Matteo Monticelli ◽  
Pietro Zeppa ◽  
Marco Mammi ◽  
Federica Penner ◽  
Antonio Melcarne ◽  
...  

When discussing “mentalization,” we refer to a very special ability that only humans and few species of great apes possess: the ability to think about themselves and to represent in their mind their own mental state, attitudes, and beliefs and those of others. In this review, a summary of the main cortical areas involved in mentalization is presented. A thorough literature search using PubMed MEDLINE database was performed. The search terms “cognition,” “metacognition,” “mentalization,” “direct electrical stimulation,” “theory of mind,” and their synonyms were combined with “prefrontal cortex,” “temporo-parietal junction,” “parietal cortex,” “inferior frontal gyrus,” “cingulate gyrus,” and the names of other cortical areas to extract relevant published papers. Non-English publications were excluded. Data were extracted and analyzed in a qualitative manner. It is the authors' belief that knowledge of the neural substrate of metacognition is essential not only for the “neuroscientist” but also for the “practical neuroscientist” (i.e., the neurosurgeon), in order to better understand the pathophysiology of mentalizing dysfunctions in brain pathologies, especially those in which integrity of cortical areas or white matter connectivity is compromised. Furthermore, in the context of neuro-oncological surgery, understanding the anatomical structures involved in the theory of mind can help the neurosurgeon obtain a wider and safer resection. Though beyond of the scope of this paper, an important but unresolved issue concerns the long-range white matter connections that unify these cortical areas and that may be themselves involved in neural information processing.

2021 ◽  
Vol 12 ◽  
Author(s):  
Nahrie Suk Kim ◽  
Tae Young Lee ◽  
Wu Jeong Hwang ◽  
Yoo Bin Kwak ◽  
Seowoo Kim ◽  
...  

Deficits in theory of mind (ToM) are considered as a distinctive feature of schizophrenia. Functional magnetic resonance imaging (fMRI) studies have suggested that aberrant activity among the regions comprising the mentalizing network is related to observed ToM deficits. However, the white matter structures underlying the ToM functional network in schizophrenia remain unclear. To investigate the relationship between white matter integrity and ToM impairment, 35 patients with first-episode psychosis (FEP) and 29 matched healthy controls (HCs) underwent diffusion tensor imaging (DTI). Using tract-based spatial statistics (TBSS), fractional anisotropy (FA) values of the two regions of interest (ROI)–the cingulum and superior longitudinal fasciculus (SLF)–were acquired, and correlational analysis with ToM task scores was performed. Among the patients with FEP, ToM strange story scores were positively correlated with the FA values of the left cingulum and left SLF. There was no significant correlation between FA and ToM task scores in HCs. These results suggest that the left cingulum and SLF constitute a possible neural basis for ToM deficits in schizophrenia. Our study is the first to demonstrate the white matter connectivity underlying the mentalizing network, as well as its relation to ToM ability in patients with FEP.


1967 ◽  
Vol 12 (11) ◽  
pp. 558-559
Author(s):  
STEPHAN L. CHOROVER

2021 ◽  
Vol 7 (22) ◽  
pp. eabe7547
Author(s):  
Meenakshi Khosla ◽  
Gia H. Ngo ◽  
Keith Jamison ◽  
Amy Kuceyeski ◽  
Mert R. Sabuncu

Naturalistic stimuli, such as movies, activate a substantial portion of the human brain, invoking a response shared across individuals. Encoding models that predict neural responses to arbitrary stimuli can be very useful for studying brain function. However, existing models focus on limited aspects of naturalistic stimuli, ignoring the dynamic interactions of modalities in this inherently context-rich paradigm. Using movie-watching data from the Human Connectome Project, we build group-level models of neural activity that incorporate several inductive biases about neural information processing, including hierarchical processing, temporal assimilation, and auditory-visual interactions. We demonstrate how incorporating these biases leads to remarkable prediction performance across large areas of the cortex, beyond the sensory-specific cortices into multisensory sites and frontal cortex. Furthermore, we illustrate that encoding models learn high-level concepts that generalize to task-bound paradigms. Together, our findings underscore the potential of encoding models as powerful tools for studying brain function in ecologically valid conditions.


2021 ◽  
pp. 0271678X2199098
Author(s):  
Saima Hilal ◽  
Siwei Liu ◽  
Tien Yin Wong ◽  
Henri Vrooman ◽  
Ching-Yu Cheng ◽  
...  

To determine whether white matter network disruption mediates the association between MRI markers of cerebrovascular disease (CeVD) and cognitive impairment. Participants (n = 253, aged ≥60 years) from the Epidemiology of Dementia in Singapore study underwent neuropsychological assessments and MRI. CeVD markers were defined as lacunes, white matter hyperintensities (WMH), microbleeds, cortical microinfarcts, cortical infarcts and intracranial stenosis (ICS). White matter microstructure damage was measured as fractional anisotropy and mean diffusivity by tract based spatial statistics from diffusion tensor imaging. Cognitive function was summarized as domain-specific Z-scores. Lacunar counts, WMH volume and ICS were associated with worse performance in executive function, attention, language, verbal and visual memory. These three CeVD markers were also associated with white matter microstructural damage in the projection, commissural, association, and limbic fibers. Path analyses showed that lacunar counts, higher WMH volume and ICS were associated with executive and verbal memory impairment via white matter disruption in commissural fibers whereas impairment in the attention, visual memory and language were mediated through projection fibers. Our study shows that the abnormalities in white matter connectivity may underlie the relationship between CeVD and cognition. Further longitudinal studies are needed to understand the cause-effect relationship between CeVD, white matter damage and cognition.


Author(s):  
Hans Liljenström

AbstractWhat is the role of consciousness in volition and decision-making? Are our actions fully determined by brain activity preceding our decisions to act, or can consciousness instead affect the brain activity leading to action? This has been much debated in philosophy, but also in science since the famous experiments by Libet in the 1980s, where the current most common interpretation is that conscious free will is an illusion. It seems that the brain knows, up to several seconds in advance what “you” decide to do. These studies have, however, been criticized, and alternative interpretations of the experiments can be given, some of which are discussed in this paper. In an attempt to elucidate the processes involved in decision-making (DM), as an essential part of volition, we have developed a computational model of relevant brain structures and their neurodynamics. While DM is a complex process, we have particularly focused on the amygdala and orbitofrontal cortex (OFC) for its emotional, and the lateral prefrontal cortex (LPFC) for its cognitive aspects. In this paper, we present a stochastic population model representing the neural information processing of DM. Simulation results seem to confirm the notion that if decisions have to be made fast, emotional processes and aspects dominate, while rational processes are more time consuming and may result in a delayed decision. Finally, some limitations of current science and computational modeling will be discussed, hinting at a future development of science, where consciousness and free will may add to chance and necessity as explanation for what happens in the world.


Sign in / Sign up

Export Citation Format

Share Document