scholarly journals Brain Activity Reveals Multiple Motor-Learning Mechanisms in a Real-World Task

Author(s):  
Shlomi Haar ◽  
A. Aldo Faisal
Author(s):  
Shlomi Haar ◽  
A. Aldo Faisal

AbstractMany recent studies found signatures of motor learning in neural Beta oscillations (13– 30Hz), and specifically in the post-movement Beta rebound (PMBR). All these studies were in controlled laboratory-tasks in which the task designed to induce the studied learning mechanism. Interestingly, these studies reported opposing dynamics of the PMBR magnitude over learning for the error-based and reward-based tasks (increase versus decrease, respectively). Here we explored the PMBR dynamics during real-world motor-skill-learning in a billiards task using mobile-brain-imaging. Our EEG recordings highlight the opposing dynamics of PMBR magnitudes (increase versus decrease) between different subjects performing the same task. The groups of subjects, defined by their neural dynamics, also showed behavioural differences expected for different learning mechanisms. Our results suggest that when faced with the complexity of the real-world different subjects might use different learning mechanisms for the same complex task. We speculate that all subjects combine multi-modal mechanisms of learning, but different subjects have different predominant learning mechanisms.


2018 ◽  
Vol 30 (12) ◽  
pp. 1883-1901 ◽  
Author(s):  
Nicolò F. Bernardi ◽  
Floris T. Van Vugt ◽  
Ricardo Ruy Valle-Mena ◽  
Shahabeddin Vahdat ◽  
David J. Ostry

The relationship between neural activation during movement training and the plastic changes that survive beyond movement execution is not well understood. Here we ask whether the changes in resting-state functional connectivity observed following motor learning overlap with the brain networks that track movement error during training. Human participants learned to trace an arched trajectory using a computer mouse in an MRI scanner. Motor performance was quantified on each trial as the maximum distance from the prescribed arc. During learning, two brain networks were observed, one showing increased activations for larger movement error, comprising the cerebellum, parietal, visual, somatosensory, and cortical motor areas, and the other being more activated for movements with lower error, comprising the ventral putamen and the OFC. After learning, changes in brain connectivity at rest were found predominantly in areas that had shown increased activation for larger error during task, specifically the cerebellum and its connections with motor, visual, and somatosensory cortex. The findings indicate that, although both errors and accurate movements are important during the active stage of motor learning, the changes in brain activity observed at rest primarily reflect networks that process errors. This suggests that error-related networks are represented in the initial stages of motor memory formation.


2021 ◽  
Author(s):  
Corson N Areshenkoff ◽  
Daniel J Gale ◽  
Joe Y Nashed ◽  
Dominic Standage ◽  
John Randall Flanagan ◽  
...  

Humans vary greatly in their motor learning abilities, yet little is known about the neural mechanisms that underlie this variability. Recent neuroimaging and electrophysiological studies demonstrate that large-scale neural dynamics inhabit a low-dimensional subspace or manifold, and that learning is constrained by this intrinsic manifold architecture. Here we asked, using functional MRI, whether subject-level differences in neural excursion from manifold structure can explain differences in learning across participants. We had subjects perform a sensorimotor adaptation task in the MRI scanner on two consecutive days, allowing us to assess their learning performance across days, as well as continuously measure brain activity. We find that the overall neural excursion from manifold activity in both cognitive and sensorimotor brain networks is associated with differences in subjects' patterns of learning and relearning across days. These findings suggest that off-manifold activity provides an index of the relative engagement of different neural systems during learning, and that intersubject differences in patterns of learning and relearning across days are related to reconfiguration processes in cognitive and sensorimotor networks during learning.


2013 ◽  
Vol 25 (12) ◽  
pp. 2207-2215 ◽  
Author(s):  
Georg Dirnberger ◽  
Judith Novak ◽  
Christian Nasel

Patients with cerebellar stroke are impaired in procedural learning. Several different learning mechanisms contribute to procedural learning in healthy individuals. The aim was to compare the relative share of different learning mechanisms in patients and healthy controls. Ten patients with cerebellar stroke and 12 healthy controls practiced a visuomotor serial reaction time task. Learning blocks with high stimulus–response compatibility were exercised repeatedly; in between these, participants performed test blocks with the same or a different (mirror-inverted or unrelated) stimulus sequence and/or the same or a different (mirror-inverted) stimulus–response allocation. This design allowed to measure the impact of motor learning and perceptual learning independently and to separate both mechanisms from the learning of stimulus–response pairs. Analysis of the learning blocks showed that, as expected, both patients and controls improved their performance over time, although patients remained significantly slower. Analysis of the test blocks revealed that controls showed significant motor learning as well as significant visual perceptual learning, whereas cerebellar patients showed only significant motor learning. Healthy participants were able to use perceptual information for procedural learning even when the rule linking stimuli and responses had been changed, whereas patients with cerebellar lesions could not recruit this perception-based mechanism. Therefore, the cerebellum appears involved in the accurate processing of perceptual information independent from prelearned stimulus–response mappings.


NeuroImage ◽  
2007 ◽  
Vol 36 (2) ◽  
pp. 370-377 ◽  
Author(s):  
Tjeerd W. Boonstra ◽  
Andreas Daffertshofer ◽  
Michael Breakspear ◽  
Peter J. Beek

2015 ◽  
Vol 12 (6) ◽  
pp. 066028 ◽  
Author(s):  
H Zhang ◽  
R Chavarriaga ◽  
Z Khaliliardali ◽  
L Gheorghe ◽  
I Iturrate ◽  
...  

2021 ◽  
Author(s):  
Gladys Jiamin Heng ◽  
Quek Hiok Chai ◽  
SH Annabel Chen

Learning mechanisms have been postulated to be one of the primary reasons why different individuals have similar or different emotional responses to music. While existing studies have largely examined mechanisms related to learning in terms of cultural familiarity or recognition, few studies have conceptualized it in terms of an individual’s level of familiarity with musical style, which could be a better reflection of an individual’s composite musical experiences. Therefore, the current study aimed to bridge this research gap by investigating the electrophysiological correlates of the effects of familiarity with musical style on music-evoked emotions. 49 non-musicians listened to 12 musical excerpts of a familiar musical style (Japanese animation soundtracks) and eight musical excerpts of an unfamiliar musical style (Greek Laïkó music) with their eyes closed as electroencephalography is being recorded. Participants rated their felt emotions after each musical excerpt is played. Behavioral ratings showed that music of the familiar musical style was felt as significantly more pleasant as compared to the unfamiliar musical style while no significant differences in arousal were observed. In terms of brain activity, music of the unfamiliar musical style elicited higher (1) theta power in all brain regions (including frontal midline), (2) alpha power in frontal region, and (3) beta power in fronto-temporo-occipital regions as compared to the familiar musical style. This is interpreted to reflect the need for greater attentional resources when listening to music of an unfamiliar style, where listeners are less familiar with the syntax and structure of the music as compared to music of a familiar style. In addition, classification analysis showed that unfamiliar and familiar musical styles can be distinguished with 67.86% accuracy, Thus, clinicians should consider the musical profile of the client when choosing an appropriate selection of music in the treatment plan, so as to achieve better efficacy.


2020 ◽  
Author(s):  
Matthew Masapollo

Stuttering is a neurodevelopmental disorder characterized by impaired execution of articulatory movements needed for fluent speech production. Existing theoretical models propose that these deficits reflect a malfunction in the cortico-basal-ganglia-thalamocortical (cortico-BG) loop that is responsible for selecting and initiating speech motor programs. However, the cortico-BG loop has also been hypothesized to play a role in speech motor learning. To distinguish motor execution impairments from motor learning impairments in stuttering, the authors examined the behavioral and neural correlates of learning to produce novel phoneme sequences in adults who stutter (AWS) and neurotypical controls. Participants intensively practiced producing pseudowords containing non-native consonant clusters over two days. Results showed that, behaviorally, both AWS and controls produced the words with increased speed and accuracy following motor practice, and the rate of improvement was comparable for the two groups. Using functional magnetic resonance imaging (fMRI), the authors compared brain activity during articulation of the practiced words and a set of novel pseudowords (matched in phonetic complexity). FMRI analyses revealed no differences between AWS and controls in cortical or subcortical regions; both groups showed comparable increases in activation in left-lateralized brain areas implicated in phonological working memory and speech motor planning during production of the novel sequences compared to the practiced sequences. Moreover, activation in left-lateralized basal ganglia sites was negatively correlated with stuttering severity in AWS. Collectively, these findings indicate that AWS exhibit no deficit in learning novel speech sequences but do show impaired execution of these sequences prior to and after learning.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245717
Author(s):  
Shlomi Haar ◽  
Guhan Sundar ◽  
A. Aldo Faisal

Motor-learning literature focuses on simple laboratory-tasks due to their controlled manner and the ease to apply manipulations to induce learning and adaptation. Recently, we introduced a billiards paradigm and demonstrated the feasibility of real-world-neuroscience using wearables for naturalistic full-body motion-tracking and mobile-brain-imaging. Here we developed an embodied virtual-reality (VR) environment to our real-world billiards paradigm, which allows to control the visual feedback for this complex real-world task, while maintaining sense of embodiment. The setup was validated by comparing real-world ball trajectories with the trajectories of the virtual balls, calculated by the physics engine. We then ran our short-term motor learning protocol in the embodied VR. Subjects played billiard shots when they held the physical cue and hit a physical ball on the table while seeing it all in VR. We found comparable short-term motor learning trends in the embodied VR to those we previously reported in the physical real-world task. Embodied VR can be used for learning real-world tasks in a highly controlled environment which enables applying visual manipulations, common in laboratory-tasks and rehabilitation, to a real-world full-body task. Embodied VR enables to manipulate feedback and apply perturbations to isolate and assess interactions between specific motor-learning components, thus enabling addressing the current questions of motor-learning in real-world tasks. Such a setup can potentially be used for rehabilitation, where VR is gaining popularity but the transfer to the real-world is currently limited, presumably, due to the lack of embodiment.


Sign in / Sign up

Export Citation Format

Share Document