scholarly journals Abnormal Whole Brain Functional Connectivity Pattern Homogeneity and Couplings in Migraine Without Aura

2020 ◽  
Vol 14 ◽  
Author(s):  
Yingxia Zhang ◽  
Hong Chen ◽  
Min Zeng ◽  
Junwei He ◽  
Guiqiang Qi ◽  
...  

Previous studies have reported abnormal amplitude of low-frequency fluctuation and regional homogeneity in patients with migraine without aura using resting-state functional magnetic resonance imaging. However, how whole brain functional connectivity pattern homogeneity and its corresponding functional connectivity changes in patients with migraine without aura is unknown. In the current study, we employed a recently developed whole brain functional connectivity homogeneity (FcHo) method to identify the voxel-wise changes of functional connectivity patterns in 21 patients with migraine without aura and 21 gender and age matched healthy controls. Moreover, resting-state functional connectivity analysis was used to reveal the changes of corresponding functional connectivities. FcHo analyses identified significantly decreased FcHo values in the posterior cingulate cortex (PCC), thalamus (THA), and left anterior insula (AI) in patients with migraine without aura compared to healthy controls. Functional connectivity analyses further found decreased functional connectivities between PCC and medial prefrontal cortex (MPFC), between AI and anterior cingulate cortex, and between THA and left precentral gyrus (PCG). The functional connectivities between THA and PCG were negatively correlated with pain intensity. Our findings indicated that whole brain FcHo and connectivity abnormalities of these regions may be associated with functional impairments in pain processing in patients with migraine without aura.

2021 ◽  
Author(s):  
Limei Song ◽  
Huadong Yang ◽  
Mingdong Yang ◽  
Dianmei Liu ◽  
Yanming Ge ◽  
...  

Abstract Previous studies have revealed changed functional connectivity patterns between brain areas in chess players using resting-state functional magnetic resonance imaging (rs-fMRI). However, how to exactly characterize the voxel-wise whole brain functional connectivity pattern changes in chess players remains unclear, which could provide more convincing evidence for establishing the relationship between long-term chess practice and brain function changes. In this study, we employed newly developed whole brain functional connectivity pattern homogeneity (FcHo) method to identify the voxel-wise changes of functional connectivity patterns in 28 chess master players and 27 healthy novices. Seed-based functional connectivity analysis was used to identify the alteration of corresponding functional couplings. FcHo analysis revealed significantly increased whole brain functional connectivity pattern similarity in anterior cingulate cortex (ACC), anterior middle temporal gyrus (aMTG), primary visual cortex (V1), and decreased FcHo in thalamus and precentral gyrus in chess players. Resting-state functional connectivity analyses identified chess players showed decreased functional connections between V1 and precentral gyrus. Besides, a linear support vector machine (SVM) based classification achieved an accuracy of 85.45%, a sensitivity of 85.71% and a specificity of 85.19% to differentiate chess players from novices by leave-one-out cross-validation. Finally, correlation analyses revealed that the mean FcHo values of thalamus were significantly negatively correlated with the training time. Our findings provide new evidences for the important roles of ACC, aMTG, V1, thalamus and precentral gyrus in chess players and indicate that long-term professional chess training may enhance the semantic and episodic processing, efficiency of visual-motor transformation, and cognitive ability.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hong Zhang ◽  
Dongqin Xia ◽  
Xiaoping Wu ◽  
Run Liu ◽  
Hongsheng Liu ◽  
...  

Cervical discogenic pain (CDP) is mainly induced by cervical disc degeneration. However, how CDP modulates the functional interactions within the pain network remains unclear. In the current study, we studied the changed resting-state functional connectivities of pain network with 40 CDP patients and 40 age-, gender-matched healthy controls. We first defined the pain network with the seeds of the posterior insula (PI). Then, whole brain and seed-to-target functional connectivity analyses were performed to identify the differences in functional connectivity between CDP and healthy controls. Finally, correlation analyses were applied to reveal the associations between functional connectivities and clinical measures. Whole-brain functional connectivity analyses of PI identified increased functional connectivity between PI and thalamus (THA) and decreased functional connectivity between PI and middle cingulate cortex (MCC) in CDP patients. Functional connectivity analyses within the pain network further revealed increased functional connectivities between bilateral PI and bilateral THA, and decreased functional connectivities between left PI and MCC, between left postcentral gyrus (PoCG) and MCC in CDP patients. Moreover, we found that the functional connectivities between right PI and left THA, between left PoCG and MCC were negatively and positively correlated with the visual analog scale, respectively. Our findings provide direct evidence of how CDP modulates the pain network, which may facilitate understanding of the neural basis of CDP.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priska Zuber ◽  
Laura Gaetano ◽  
Alessandra Griffa ◽  
Manuel Huerbin ◽  
Ludovico Pedullà ◽  
...  

AbstractAlthough shared behavioral and neural mechanisms between working memory (WM) and motor sequence learning (MSL) have been suggested, the additive and interactive effects of training have not been studied. This study aimed at investigating changes in brain functional connectivity (FC) induced by sequential (WM + MSL and MSL + WM) and combined (WM × MSL) training programs. 54 healthy subjects (27 women; mean age: 30.2 ± 8.6 years) allocated to three training groups underwent twenty-four 40-min training sessions over 6 weeks and four cognitive assessments including functional MRI. A double-baseline approach was applied to account for practice effects. Test performances were compared using linear mixed-effects models and t-tests. Resting state fMRI data were analysed using FSL. Processing speed, verbal WM and manual dexterity increased following training in all groups. MSL + WM training led to additive effects in processing speed and verbal WM. Increased FC was found after training in a network including the right angular gyrus, left superior temporal sulcus, right superior parietal gyrus, bilateral middle temporal gyri and left precentral gyrus. No difference in FC was found between double baselines. Results indicate distinct patterns of resting state FC modulation related to sequential and combined WM and MSL training suggesting a relevance of the order of training performance. These observations could provide new insight for the planning of effective training/rehabilitation.


2014 ◽  
Vol 13 (6) ◽  
pp. 690-698 ◽  
Author(s):  
Joel S. Beckett ◽  
Eric D. Brooks ◽  
Cheryl Lacadie ◽  
Brent Vander Wyk ◽  
Roger J. Jou ◽  
...  

Object Sagittal nonsyndromic craniosynostosis (sNSC) is the most common form of NSC. The condition is associated with a high prevalence (> 50%) of deficits in executive function. The authors employed diffusion tensor imaging (DTI) and functional MRI to evaluate whether hypothesized structural and functional connectivity differences underlie the observed neurocognitive morbidity of sNSC. Methods Using a 3-T Siemens Trio MRI system, the authors collected DTI and resting-state functional connectivity MRI data in 8 adolescent patients (mean age 12.3 years) with sNSC that had been previously corrected via total vault cranioplasty and 8 control children (mean age 12.3 years) without craniosynostosis. Data were analyzed using the FMRIB Software Library and BioImageSuite. Results Analyses of the DTI data revealed white matter alterations approaching statistical significance in all supratentorial lobes. Statistically significant group differences (sNSC < control group) in mean diffusivity were localized to the right supramarginal gyrus. Analysis of the resting-state seed in relation to whole-brain data revealed significant increases in negative connectivity (anticorrelations) of Brodmann area 8 to the prefrontal cortex (Montreal Neurological Institute [MNI] center of mass coordinates [x, y, z]: −6, 53, 6) and anterior cingulate cortex (MNI coordinates 6, 43, 14) in the sNSC group relative to controls. Furthermore, in the sNSC patients versus controls, the Brodmann area 7, 39, and 40 seed had decreased connectivity to left angular gyrus (MNI coordinates −31, −61, 34), posterior cingulate cortex (MNI coordinates 13, −52, 18), precuneus (MNI coordinates 10, −55, 54), left and right parahippocampus (MNI coordinates −13, −52, 2 and MNI coordinates 11, −50, 2, respectively), lingual (MNI coordinates −11, −86, −10), and fusiform gyri (MNI coordinates −30, −79, −18). Intrinsic connectivity analysis also revealed altered connectivity between central nodes in the default mode network in sNSC relative to controls; the left and right posterior cingulate cortices (MNI coordinates −5, −35, 34 and MNI coordinates 6, −42, 39, respectively) were negatively correlated to right hemisphere precuneus (MNI coordinates 6, −71, 46), while the left ventromedial prefrontal cortex (MNI coordinates 6, 34, −8) was negatively correlated to right middle frontal gyrus (MNI coordinates 40, 4, 33). All group comparisons (sNSC vs controls) were conducted at a whole brain–corrected threshold of p < 0.05. Conclusions This study demonstrates altered neocortical structural and functional connectivity in sNSC that may, in part or substantially, underlie the neuropsychological deficits commonly reported in this population. Future studies combining analysis of multimodal MRI and clinical characterization data in larger samples of participants are warranted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jintao Wu ◽  
Qianxiang Zhou ◽  
Jiaxuan Li ◽  
Yang Chen ◽  
Shuyu Shao ◽  
...  

AbstractCognitive abilities are impaired by sleep deprivation and can be recovered when sufficient sleep is obtained. Changes in alpha-band oscillations are considered to be closely related to sleep deprivation. In this study, power spectrum, source localization and functional connectivity analyses were used to investigate the changes in resting-state alpha-band activity after normal sleep, sleep deprivation and recovery sleep. The results showed that the global alpha power spectrum decreased and source activation was notably reduced in the precuneus, posterior cingulate cortex, cingulate gyrus, and paracentral lobule after sleep deprivation. Functional connectivity analysis after sleep deprivation showed a weakened functional connectivity pattern in a widespread network with the precuneus and posterior cingulate cortex as the key nodes. Furthermore, the changes caused by sleep deprivation were reversed to a certain extent but not significantly after one night of sleep recovery, which may be due to inadequate time for recovery sleep. In conclusion, large-scale resting-state alpha-band activation and functional connectivity were weakened after sleep deprivation, and the inhibition of default mode network function with the precuneus and posterior cingulate cortex as the pivotal nodes may be an important cause of cognitive impairment. These findings provide new insight into the physiological response to sleep deprivation and determine how sleep deprivation disrupts brain alpha-band oscillations.


2018 ◽  
Author(s):  
Paulina Kieliba ◽  
Sasidhar Madugula ◽  
Nicola Filippini ◽  
Eugene P. Duff ◽  
Tamar R. Makin

AbstractMeasuring whole-brain functional connectivity patterns based on task-free (‘restingstate’) spontaneous fluctuations in the functional MRI (fMRI) signal is a standard approach to probing habitual brain states, independent of task-specific context. This view is supported by spatial correspondence between task- and rest-derived connectivity networks. Yet, it remains unclear whether intrinsic connectivity observed in a resting-state acquisitions is persistent during task. Here, we sought to determine how changes in ongoing brain activation, elicited by task performance, impact the integrity of whole-brain functional connectivity patterns. We employed a ‘steadystates’ paradigm, in which participants continuously executed a specific task (without baseline periods). Participants underwent separate task-based (visual, motor and visuomotor) or task-free (resting) steady-state scans, each performed over a 5-minute period. This unique design allowed us to apply a set of traditional resting-state analyses to various task-states. In addition, a classical fMRI block-design was employed to identify individualized brain activation patterns for each task, allowing to characterize how differing activation patterns across the steady-states impact whole-brain intrinsic connectivity patterns. By examining correlations across segregated brain regions (nodes) and the whole brain (using independent component analysis), we show that the whole-brain network architecture characteristic of the resting-state is robustly preserved across different steady-task states, despite striking inter-task changes in brain activation (signal amplitude). Subtler changes in functional connectivity were detected locally, within the active networks. Together, we show that intrinsic connectivity underlying the canonical resting-state networks is relatively stable even when participants are engaged in different tasks and is not limited to the resting-state.New and NoteworthyDoes intrinsic functional connectivity (FC) reflect the canonical or transient state of the brain? We tested the consistency of the intrinsic connectivity networks across different task-conditions. We show that despite local changes in connectivity, at the whole-brain level there is little modulation in FC patterns, despite profound and large-scale activation changes. We therefore conclude that intrinsic FC largely reflects the a priori habitual state of the brain, independent of the specific cognitive context.


2020 ◽  
Author(s):  
Isabel M. Berwian ◽  
Julia G. Wenzel ◽  
Leonie Kuehn ◽  
Inga Schnuerer ◽  
Lars Kasper ◽  
...  

AbstractThe risk of relapsing into depression after stopping antidepressants is high, but no established predictors exist. Resting-state functional magnetic resonance imaging (rsfMRI) measures may help predict relapse and identify the mechanisms by which relapses occur. rsfMRI data were acquired from healthy controls and from patients with remitted major depressive disorder on antidepressants. Patients were assessed a second time either before or after discontinuation of the antidepressant, and followed up for six months to assess relapse. A seed-based functional connectivity analysis was conducted focusing on the left subgenual anterior cingulate cortex and left posterior cingulate cortex. Seeds in the amygdala and dorsolateral prefrontal cortex were explored. 44 healthy controls (age: 33.8 (10.5), 73% female) and 84 patients (age: 34.23 (10.8), 80% female) were included in the analysis. 29 patients went on to relapse and 38 remained well. The seed-based analysis showed that discontinuation resulted in an increased functional connectivity between the right dorsolateral prefrontal cortex and the parietal cortex in non-relapsers. In an exploratory analysis, this functional connectivity predicted relapse risk with a balanced accuracy of 0.86. Further seed-based analyses, however, failed to reveal differences in functional connectivity between patients and controls, between relapsers and non-relapsers before discontinuation and changes due to discontinuation independent of relapse. In conclusion, changes in the connectivity between the dorsolateral prefrontal cortex and the posterior default mode network were associated with and predictive of relapse after open-label antidepressant discontinuation. This finding requires replication in a larger dataset.


Sign in / Sign up

Export Citation Format

Share Document