scholarly journals Improving Emotion Regulation Through Real-Time Neurofeedback Training on the Right Dorsolateral Prefrontal Cortex: Evidence From Behavioral and Brain Network Analyses

2021 ◽  
Vol 15 ◽  
Author(s):  
Linlin Yu ◽  
Quanshan Long ◽  
Yancheng Tang ◽  
Shouhang Yin ◽  
Zijun Chen ◽  
...  

We investigated if emotion regulation can be improved through self-regulation training on non-emotional brain regions, as well as how to change the brain networks implicated in this process. During the training period, the participants were instructed to up-regulate their right dorsolateral prefrontal cortex (rDLPFC) activity according to real-time functional near-infrared spectroscopy (fNIRS) neurofeedback signals, and there was no emotional element. The results showed that the training significantly increased emotion regulation, resting-state functional connectivity (rsFC) within the emotion regulation network (ERN) and frontoparietal network (FPN), and rsFC between the ERN and amygdala; however, training did not influence the rsFC between the FPN and the amygdala. However, self-regulation training on rDLPFC significantly improved emotion regulation and generally increased the rsFCs within the networks; the rsFC between the ERN and amygdala was also selectively increased. The present study also described a safe approach that may improve emotion regulation through self-regulation training on non-emotional brain regions.

Gesture ◽  
2020 ◽  
Vol 19 (2-3) ◽  
pp. 196-222
Author(s):  
Michela Balconi ◽  
Angela Bartolo ◽  
Giulia Fronda

Abstract The interest of neuroscience has been aimed at the investigation of the neural bases underlying gestural communication. This research explored the intra- and inter-brain connectivity between encoder and decoder. Specifically, adopting a “hyperscanning paradigm” with the functional Near-infrared Spectroscopy (fNIRS) cerebral connectivity in oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin levels were revealed during the reproduction of affective, social, and informative gestures of different valence. Results showed an increase of intra- and inter-brain connectivity in dorsolateral prefrontal cortex for affective gestures, in superior frontal gyrus for social gestures and in frontal eyes field for informative gestures. Moreover, encoder showed a higher intra-brain connectivity in posterior parietal areas more than decoder. Finally, an increasing of inter-brain connectivity more than intra-brain (ConIndex) was observed in left regions for positive gestures. The present research has explored how the individuals neural tuning mechanisms turn out to be strongly influenced by the nature of specific gestures.


2021 ◽  
Vol 3 ◽  
Author(s):  
Zilu Liang

People with mental stress often experience disturbed sleep, suggesting stress-related abnormalities in brain activity during sleep. However, no study has looked at the physiological oscillations in brain hemodynamics during sleep in relation to stress. In this pilot study, we aimed to explore the relationships between bedtime stress and the hemodynamics in the prefrontal cortex during the first sleep cycle. We tracked the stress biomarkers, salivary cortisol, and secretory immunoglobulin A (sIgA) on a daily basis and utilized the days of lower levels of measured stress as natural controls to the days of higher levels of measured stress. Cortical hemodynamics was measured using a cutting-edge wearable functional near-infrared spectroscopy (fNIRS) system. Time-domain, frequency-domain features as well as nonlinear features were derived from the cleaned hemodynamic signals. We proposed an original ensemble algorithm to generate an average importance score for each feature based on the assessment of six statistical and machine learning techniques. With all channels counted in, the top five most referred feature types are Hurst exponent, mean, the ratio of the major/minor axis standard deviation of the Poincaré plot of the signal, statistical complexity, and crest factor. The left rostral prefrontal cortex (RLPFC) was the most relevant sub-region. Significantly strong correlations were found between the hemodynamic features derived at this sub-region and all three stress indicators. The dorsolateral prefrontal cortex (DLPFC) is also a relevant cortical area. The areas of mid-DLPFC and caudal-DLPFC both demonstrated significant and moderate association to all three stress indicators. No relevance was found in the ventrolateral prefrontal cortex. The preliminary results shed light on the possible role of the RLPCF, especially the left RLPCF, in processing stress during sleep. In addition, our findings echoed the previous stress studies conducted during wake time and provides supplementary evidence on the relevance of the dorsolateral prefrontal cortex in stress responses during sleep. This pilot study serves as a proof-of-concept for a new research paradigm to stress research and identified exciting opportunities for future studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christoph F. Geissler ◽  
Christian Frings ◽  
Birte Moeller

AbstractExecution of two independent actions in quick succession results in transient binding of these two actions. Subsequent repetition of any of these actions automatically retrieves the other. This process is probably fundamental for developing complex action sequences. However, rigid bindings between two actions are not always adaptive. Sometimes, it is necessary to repeat only one of the two previously executed actions. In such situations, stored action sequences must be disassembled, for the sake of flexibility. Exact mechanisms that allow for such an active unbinding of actions remain largely unknown, but it stands to reason, that some form of prefrontal executive control is necessary. Building on prior neuronal research that explored other forms of binding (e.g. between distractors and responses and abstract representations and responses), we explored middle and superior frontal correlates of -response binding in a sequential classification task with functional near-infrared spectroscopy. We found that anterior dorsolateral prefrontal cortex activity varied as a function of response–repetition condition. Activity in the right anterior dorsolateral prefrontal cortex correlated with changes in reaction times due to response–response binding. Our results indicate that the right anterior dorsolateral prefrontal cortex dismantles bindings between consecutive actions, whenever such bindings interfere with current action goals.


2014 ◽  
Vol 45 (2) ◽  
pp. 395-406 ◽  
Author(s):  
C. A. Roberts ◽  
M. A. Wetherell ◽  
J. E. Fisk ◽  
C. Montgomery

BackgroundCognitive deficits are well documented in ecstasy (3,4-methylenedioxymethamphetamine; MDMA) users, with such deficits being taken as evidence of dysregulation of the serotonin (5-hydroxytryptamine; 5-HT) system. More recently neuroimaging has been used to corroborate these deficits. The present study aimed to assess multitasking performance in ecstasy polydrug users, polydrug users and drug-naive individuals. It was predicted that ecstasy polydrug users would perform worse than non-users on the behavioural measure and this would be supported by differences in cortical blood oxygenation.MethodIn the study, 20 ecstasy-polydrug users, 17 polydrug users and 19 drug-naive individuals took part. On day 1, drug use history was taken and questionnaire measures were completed. On day 2, participants completed a 20-min multitasking stressor while brain blood oxygenation was measured using functional near infrared spectroscopy (fNIRS).ResultsThere were no significant differences between the three groups on the subscales of the multitasking stressor. In addition, there were no significant differences on self-report measures of perceived workload (NASA Task Load Index). In terms of mood, ecstasy users were significantly less calm and less relaxed compared with drug-naive controls. There were also significant differences at three voxels on the fNIRS, indicating decreased blood oxygenation in ecstasy users compared with drug-naive controls at voxel 2 (left dorsolateral prefrontal cortex), voxel 14 and voxel 16 (right dorsolateral prefrontal cortex), and compared with polydrug controls at V14.ConclusionsThe results of the present study provide support for changes in brain activation during performance of demanding tasks in ecstasy polydrug users, which could be related to cerebral vasoconstriction.


2020 ◽  
Vol 20 (6) ◽  
pp. 1336-1348
Author(s):  
Michela Balconi ◽  
Giulia Fronda

AbstractThe neuroscience interest for moral decision-making has recently increased. To investigate the processes underlying moral behavior, this research aimed to investigate neurophysiological and behavioral correlates of decision-making in moral contexts. Specifically, functional Near-infrared spectroscopy (fNIRS) allowed to record oxygenated (O2Hb) and deoxygenated (HHb) cerebral hemoglobin concentrations during different moral conditions (professional fit, company fit, social fit) and offers types (fair, unfair, neutral). Moreover, individuals’ responses to offers types and reaction time (RTs) were considered. Specifically, from hemodynamic results emerged a difference in O2Hb and HHb activity according to moral conditions and offers types in different brain regions. In particular, O2Hb increase and a HHb decrease were observed in ventromedial and dorsolateral prefrontal cortex (VMPFC, DLPFC) for fair offers in professional fit condition and in superior temporal sulcus (STS) for unfair offers in social fit condition. Moreover, an increase of left O2Hb activity in professional fit condition and in right VMPFC for unfair offers in company fit condition was observed. In addition, from behavioral results, an RTs increase in company and social fit condition for fair and unfair offers emerged. This study, therefore, shows the behavioral and neurophysiological correlates of moral decision-making that guide moral behavior in different context, such as company one.


2017 ◽  
Author(s):  
Eliana Vassena ◽  
Robin Gerrits ◽  
Jelle Demanet ◽  
Tom Verguts ◽  
Roma Siugzdaite

AbstractPreparing for a mentally demanding task calls upon cognitive and motivational resources. The underlying neural implementation of these mechanisms is receiving growing attention, given the implications for professional, social, and medical contexts. While several fMRI studies converge in assigning a crucial role to a cortico-subcortical network including Anterior Cigulate Cortex (ACC) and striatum, the involvement of Dorsolateral Prefrontal Cortex (DLPFC) during mental effort anticipation has yet to be replicated. This study was designed to target DLPFC contribution using functional Near Infrared Spectroscopy (fNIRS), as a more cost-effective tool measuring cortical hemodynamics. We adapted a validated mental effort task, where participants performed easy and difficult mental calculation, while measuring DLPFC activity during the anticipation phase. As hypothesized, DLPFC activity increased during preparation for a hard task as compared to an easy task. Besides replicating a previous fMRI study, these results establish fNIRS as an effective tool to investigate cortical contributions to preparation for effortful behavior. This is especially useful if one requires testing large samples (e.g., to target individual differences), populations with contraindication for functional MRI (e.g., infants or patients with metal implants), or subjects in more naturalistic environments (e.g., work or sport).


2021 ◽  
Vol 14 ◽  
Author(s):  
Iryna Schommartz ◽  
Annika Dix ◽  
Susanne Passow ◽  
Shu-Chen Li

The ability to learn sequential contingencies of actions for predicting future outcomes is indispensable for flexible behavior in many daily decision-making contexts. It remains open whether such ability may be enhanced by transcranial direct current stimulation (tDCS). The present study combined tDCS with functional near-infrared spectroscopy (fNIRS) to investigate potential tDCS-induced effects on sequential decision-making and the neural mechanisms underlying such modulations. Offline tDCS and sham stimulation were applied over the left and right dorsolateral prefrontal cortex (dlPFC) in young male adults (N = 29, mean age = 23.4 years, SD = 3.2) in a double-blind between-subject design using a three-state Markov decision task. The results showed (i) an enhanced dlPFC hemodynamic response during the acquisition of sequential state transitions that is consistent with the findings from a previous functional magnetic resonance imaging (fMRI) study; (ii) a tDCS-induced increase of the hemodynamic response in the dlPFC, but without accompanying performance-enhancing effects at the behavioral level; and (iii) a greater tDCS-induced upregulation of hemodynamic responses in the delayed reward condition that seems to be associated with faster decision speed. Taken together, these findings provide empirical evidence for fNIRS as a suitable method for investigating hemodynamic correlates of sequential decision-making as well as functional brain correlates underlying tDCS-induced modulation. Future research with larger sample sizes for carrying out subgroup analysis is necessary in order to decipher interindividual differences in tDCS-induced effects on sequential decision-making process at the behavioral and brain levels.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256626
Author(s):  
Shun Miyashiro ◽  
Yurika Yamada ◽  
Masaru Nagaoka ◽  
Rei Shima ◽  
Toshizumi Muta ◽  
...  

Pain in the elbow, shoulder, knee, lower back, and various other joints is relieved by adhesion of pyramidal thorn patches. To elucidate the pain relief mechanism induced by the patches, we established a quantitative method for estimating the pain reduction and investigated the brain regions that change in association with pain relief. We first attempted to quantify the pain relief using transcutaneous electric stimulation (TCES) and a visual analog scale (VAS), and then applied near-infrared spectroscopy (NIRS) to the prefrontal cortex, including the dorsolateral prefrontal cortex (DLPFC) and the orbitofrontal cortex (OFC). We also examined the salivary oxytocin levels, which are thought to reflect oxytocin secretion levels from the posterior pituitary in the brain. Application of pyramidal thorn patches to pain regions decreased the pain degree estimated using TCES and VAS. Oxyhemoglobin levels were likely to be decreased in the left DLPFC on the basis of NIRS measurements during patch treatment, suggesting that the left DLPFC is involved in pain relief. On the other hand, the salivary oxytocin levels varied widely. A potential reason for the varying salivary oxytocin levels is its utilization in the pain region as an analgesic agent. Our results suggest that the left DLPFC will become a target brain region for pain therapy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaowei Jiang ◽  
Chenghao Zhou ◽  
Na Ao ◽  
Wenke Gu ◽  
Jingyi Li ◽  
...  

Resource scarcity imposes challenging demands on the human cognitive system. Insufficient resources cause the scarcity mindset to affect cognitive performance, while reward enhances cognitive function. Here, we examined how reward and scarcity simultaneously contribute to cognitive performance. Experimental manipulation to induce a polar scarcity mindset and reward conditions within participants under functional near-infrared spectroscopy (fNIRS) recording was implemented to explore the mechanism underlying the scarcity mindset and reward in terms of behavior and neurocognition. Participants showed decreased functional connectivity from the dorsolateral prefrontal cortex (DLPFC) to the ventrolateral prefrontal cortex (VLPFC) with a scarcity mindset, a region often implicated in cognitive control. Moreover, under reward conditions, the brain activation of the maximum total Hb bold signal was mainly located in the left hemisphere [channels 1, 3, and 4, left ventrolateral prefrontal cortex (L-VLPFC) and channel 6, left dorsolateral prefrontal cortex (L-DLPFC)], and there was also significant brain activation of the right dorsolateral prefrontal cortex (R-DLPFC) in the right hemisphere (channel 17). Furthermore, these data indicate the underlying neural changes of the scarcity mentality and demonstrate that brain activities may underlie reward processing. Additionally, the base-tree machine learning model was trained to detect the mechanism of reward function in the prefrontal cortex (PFC). According to SHapley Additive exPlanations (SHAP), channel 8 contributed the most important effect, as well as demonstrating a high-level interrelationship with other channels.


Sign in / Sign up

Export Citation Format

Share Document