scholarly journals Simultaneous Measurement of the BOLD Effect and Metabolic Changes in Response to Visual Stimulation Using the MEGA-PRESS Sequence at 3 T

2021 ◽  
Vol 15 ◽  
Author(s):  
Gerard Eric Dwyer ◽  
Alexander R. Craven ◽  
Justyna Bereśniewicz ◽  
Katarzyna Kazimierczak ◽  
Lars Ersland ◽  
...  

The blood oxygen level dependent (BOLD) effect that provides the contrast in functional magnetic resonance imaging (fMRI) has been demonstrated to affect the linewidth of spectral peaks as measured with magnetic resonance spectroscopy (MRS) and through this, may be used as an indirect measure of cerebral blood flow related to neural activity. By acquiring MR-spectra interleaved with frames without water suppression, it may be possible to image the BOLD effect and associated metabolic changes simultaneously through changes in the linewidth of the unsuppressed water peak. The purpose of this study was to implement this approach with the MEGA-PRESS sequence, widely considered to be the standard sequence for quantitative measurement of GABA at field strengths of 3 T and lower, to observe how changes in both glutamate (measured as Glx) and GABA levels may relate to changes due to the BOLD effect. MR-spectra and fMRI were acquired from the occipital cortex (OCC) of 20 healthy participants whilst undergoing intrascanner visual stimulation in the form of a red and black radial checkerboard, alternating at 8 Hz, in 90 s blocks comprising 30 s of visual stimulation followed by 60 s of rest. Results show very strong agreement between the changes in the linewidth of the unsuppressed water signal and the canonical haemodynamic response function as well as a strong, negative, but not statistically significant, correlation with the Glx signal as measured from the OFF spectra in MEGA-PRESS pairs. Findings from this experiment suggest that the unsuppressed water signal provides a reliable measure of the BOLD effect and that correlations with associated changes in GABA and Glx levels may also be measured. However, discrepancies between metabolite levels as measured from the difference and OFF spectra raise questions regarding the reliability of the respective methods.

2012 ◽  
Vol 32 (8) ◽  
pp. 1484-1495 ◽  
Author(s):  
Yan Lin ◽  
Mary C Stephenson ◽  
Lijing Xin ◽  
Antonio Napolitano ◽  
Peter G Morris

Proton magnetic resonance spectroscopy (1H-MRS) has been used to demonstrate metabolic changes in the visual cortex on visual stimulation. Small (2% to 11%) but significant stimulation induced increases in lactate, glutamate, and glutathione were observed along with decreases in aspartate, glutamine, and glycine, using 1H-MRS at 7 T during single and repeated visual stimulation. In addition, decreases in glucose and increases in γ-aminobutyric acid (GABA) were seen but did not reach significance. Changes in glutamate and aspartate are indicative of increased activity of the malate–aspartate shuttle, which taken together with the opposite changes in glucose and lactate, reflect the expected increase in brain energy metabolism. These results are in agreement with those of Mangia et al. In addition, increases in glutamate and GABA coupled with the decrease in glutamine can be interpreted in terms of increased activity of the neurotransmitter cycles. An entirely new observation is the increase of glutathione during prolonged visual stimuli. The similarity of its time course to that of glutamate suggests that it may be a response to the increased release of glutamate or to the increased production of reactive oxygen species. Together, these observations constitute the most detailed analysis to date of functional changes in human brain metabolites.


2014 ◽  
Vol 44 (5) ◽  
pp. 593-598
Author(s):  
M. P. Moshkin ◽  
A. E. Akulov ◽  
D. V. Petrovskii ◽  
O. V. Saik ◽  
E. D. Petrovskii ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 760-760
Author(s):  
Deborah DeRyckere ◽  
Natalie Serkova ◽  
Margaret E. Macy ◽  
Lori A. Gardner ◽  
Paul Jedlicka ◽  
...  

Abstract Standard methods to assess tumor progression and treatment response for leukemia patients rely on repeat sampling of bone marrow. These methods evaluate overall disease status, but are not sensitive to early biochemical or cellular responses to therapies. Identification and validation of additional pharmacodynamic endpoints that are useful for accurate prediction of therapeutic efficacy would allow for earlier assessment of clinical response and thereby facilitate the development of effective individualized treatment regimens. Ideally, these markers would be assessed using non-invasive methods. Toward this end, we used in vivo magnetic resonance imaging (MRI) and ex vivo magnetic resonance spectroscopy (MRS) to investigate changes in the bone marrow, spleen, and/or blood of leukemic MLL-AF9 transgenic (Tg) mice relative to wild-type littermates. MLL-AF9 Tg mice with leukemia exhibited a statistically significant 1.5-fold increase in bone marrow T1-weighted MRI signal intensity. Increased signal intensity preceded development of leukemia and is therefore likely to be due, at least in part, to increased bone marrow cellularity, initially as a result of pre-neoplastic myeloproliferation and later as a result of marrow infiltration with leukemic blasts. We are currently determining microvessel density in the bone marrow of leukemic MLL-AF9 Tg mice and littermate controls to determine whether an increase in blood supply may also contribute to changes in MRI signal intensity in leukemic mice. These studies suggest that T1-weighted MRI signal intensity may be useful as an indicator of bone marrow tumor burden. Leukemic MLL-AF9 Tg mice also exhibited statistically significant changes in metabolite levels in spleen, blood, and bone marrow. The Warburg effect, whereby cancer cells utilize aerobic glycolysis to meet their increased energy demands, was evident in all tissues examined as indicated by increased glycolysis rates, increased glucose utilization, and increased levels of lactate and alanine, the end-products of glycolysis. Additional changes in metabolite levels were observed in the bone marrow and/or spleen of leukemic mice. Absolute levels of glutathione were increased. Glutathione reduces reactive oxygen species that are generated as a result of increased glycolysis and high levels of glutathione are associated with chemoresistance and poor prognosis in patients with acute leukemia (Maung et al., 1994, Leukemia 8:1487–91; Kearns et al., 2001, Blood 97:393–8). Increased glycine levels were also observed and may be associated with increased pyridine and DNA synthesis in leukemia cells. Decreased glutamate and glutamine levels may reflect a decrease in utilization of the mitochondrial Krebs cycle in tumor cells. Decreased levels of myo-inositol and taurine, which function as osmoregulators, may occur as a result of osmotic stress due to increased cellularity in leukemic organs. Levels of aromatic acids, lysine and arginine, and creatine and phosphocreatine were also decreased. Many of these changes in metabolism are recapitulated in immunocompetent mice orthotopically transplanted with MLL-AF9 Tg leukemias. This study represents the first description of a comprehensive analysis of the “metabolomic” profile associated with development of acute leukemia and is, to our knowledge, the first description of changes in metabolism in an animal model of acute leukemia. The data presented here suggest novel metabolic targets for therapeutic intervention. In addition, because metabolic changes often precede detectable changes in tumor burden, they may be particularly useful as early indicators of therapeutic efficacy and may thereby allow for more rapid determination of clinical response, decreased exposure to toxic therapies in resistant patients, and more expedient conversion to effective therapies. Because changes in glucose metabolism are a central feature of tumorigenesis and changes in glutathione levels have been associated with clinical outcome in patients with acute leukemia, these metabolites are of particular interest. Future studies will use MLL-AF9 transgenic mice to investigate the roles of metabolic changes during de novo development of leukemia. Mice transplanted with MLL-AF9 Tg leukemias will also be used for studies investigating the utility of metabolic changes as indicators of therapeutic efficacy.


Sign in / Sign up

Export Citation Format

Share Document