scholarly journals Relative Power Correlates With the Decoding Performance of Motor Imagery Both Across Time and Subjects

2021 ◽  
Vol 15 ◽  
Author(s):  
Qing Zhou ◽  
Jiafan Lin ◽  
Lin Yao ◽  
Yueming Wang ◽  
Yan Han ◽  
...  

One of the most significant challenges in the application of brain-computer interfaces (BCI) is the large performance variation, which often occurs over time or across users. Recent evidence suggests that the physiological states may explain this performance variation in BCI, however, the underlying neurophysiological mechanism is unclear. In this study, we conducted a seven-session motor-imagery (MI) experiment on 20 healthy subjects to investigate the neurophysiological mechanism on the performance variation. The classification accuracy was calculated offline by common spatial pattern (CSP) and support vector machine (SVM) algorithms to measure the MI performance of each subject and session. Relative Power (RP) values from different rhythms and task stages were used to reflect the physiological states and their correlation with the BCI performance was investigated. Results showed that the alpha band RP from the supplementary motor area (SMA) within a few seconds before MI was positively correlated with performance. Besides, the changes of RP between task and pre-task stage from theta, alpha, and gamma band were also found to be correlated with performance both across time and subjects. These findings reveal a neurophysiological manifestation of the performance variations, and would further provide a way to improve the BCI performance.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Dieter Devlaminck ◽  
Bart Wyns ◽  
Moritz Grosse-Wentrup ◽  
Georges Otte ◽  
Patrick Santens

Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a new subject, one can apply multitask (from now on called multisubject) machine learning techniques to the preprocessing phase. Here, the goal of multisubject learning is to learn a spatial filter for a new subject based on its own data and that of other subjects. This paper outlines the details of the multitask CSP algorithm and shows results on two data sets. In certain subjects a clear improvement can be seen, especially when the number of training trials is relatively low.


2019 ◽  
Vol 29 (03) ◽  
pp. 2050034 ◽  
Author(s):  
Jin Wang ◽  
Qingguo Wei

To improve the classification performance of motor imagery (MI) based brain-computer interfaces (BCIs), a new signal processing algorithm for classifying electroencephalogram (EEG) signals by combining filter bank and sparse representation is proposed. The broadband EEG signals of 8–30[Formula: see text]Hz are segmented into 10 sub-band signals using a filter bank. EEG signals in each sub-band are spatially filtered by common spatial pattern (CSP). Fisher score combined with grid search is used for selecting the optimal sub-band, the band power of which is employed for designing a dictionary matrix. A testing signal can be sparsely represented as a linear combination of some columns of the dictionary. The sparse coefficients are estimated by [Formula: see text] norm optimization, and the residuals of sparse coefficients are exploited for classification. The proposed classification algorithm was applied to two BCI datasets and compared with two traditional broadband CSP-based algorithms. The results showed that the proposed algorithm provided superior classification accuracies, which were better than those yielded by traditional algorithms, verifying the efficacy of the present algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mengxi Dai ◽  
Dezhi Zheng ◽  
Shucong Liu ◽  
Pengju Zhang

Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP) approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of the proposed TKCSP approach over several state-of-the-art methods.


2014 ◽  
Vol 981 ◽  
pp. 171-174 ◽  
Author(s):  
Li Wang ◽  
Xiong Zhang ◽  
Xue Fei Zhong ◽  
Zhao Wen Fan

The hybrid brain-computer interface (BCI) based on electroencephalography (EEG) become more and more popular. Motor imagery, steady state visual evoked potentials (SSVEPs) and P300 are main training Paradigms. In our previous research, BCI systems based on motor imagery can be extended by speech imagery. However, noise and artifact may be produced by different mental tasks and EEG signals are also different among users, so the classification accuracy can be improved by selecting optimum frequency range for each user. Mutual information (MI) is usually used to choose optimal features. After extracted the features from each narrow frequency range of EEG by common spatial patterns (CSP), the features are assessed by MI. Then, the optimum frequency range can be acquired. The final classification results are calculated by support vector machine (SVM). The average result of optimum frequency range from seven subjects is better than the result of a fixed frequency range.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Qingshan She ◽  
Haitao Gan ◽  
Yuliang Ma ◽  
Zhizeng Luo ◽  
Tom Potter ◽  
...  

Motor imagery electroencephalography (EEG) has been successfully used in locomotor rehabilitation programs. While the noise-assisted multivariate empirical mode decomposition (NA-MEMD) algorithm has been utilized to extract task-specific frequency bands from all channels in the same scale as the intrinsic mode functions (IMFs), identifying and extracting the specific IMFs that contain significant information remain difficult. In this paper, a novel method has been developed to identify the information-bearing components in a low-dimensional subspace without prior knowledge. Our method trains a Gaussian mixture model (GMM) of the composite data, which is comprised of the IMFs from both the original signal and noise, by employing kernel spectral regression to reduce the dimension of the composite data. The informative IMFs are then discriminated using a GMM clustering algorithm, the common spatial pattern (CSP) approach is exploited to extract the task-related features from the reconstructed signals, and a support vector machine (SVM) is applied to the extracted features to recognize the classes of EEG signals during different motor imagery tasks. The effectiveness of the proposed method has been verified by both computer simulations and motor imagery EEG datasets.


2014 ◽  
Vol 556-562 ◽  
pp. 2829-2833 ◽  
Author(s):  
Bang Hua Yang ◽  
Ting Wu ◽  
Qian Wang ◽  
Zhi Jun Han

A recognition method based on Wavelet Packet Decomposition - Common Spatial Patterns (WPD-CSP) and Kernel Fisher Support Vector Machine (KF-SVM) is developed and used for EEG recognition in motor imagery brain–computer interfaces (BCIs). The WPD-CSP is used for feature extraction and KF-SVM is used for classification. The presented recognition method includes the following steps: (1) some important EEG channels are selected. The 'haar' wavelet basis is used to take wavelet packet decomposition. And some decomposed sub-bands related with motor imagery for each EEG channel are reconstructed to obtain the relevant frequency information. (2) A six-dimensional feature vector is obtained by the CSP feature extraction to the reconstructed signal. And then the within-class scatter is calculated based on the feature vector. (3) The scatter is added into the radical basis function to construct a new kernel function. The obtained new kernel is integrated into the SVM to act as its kernel function. To evaluate effectiveness of the proposed WPD-CSP + KF-SVM method, the data from the 2008 international BCI competition are processed. A preliminary result shows that the proposed classification algorithm can well recognize EEG data and improve the EEG recognition accuracy in motor imagery BCIs.


2019 ◽  
Vol 9 (12) ◽  
pp. 372
Author(s):  
Mustafa Yazici ◽  
Mustafa Ulutas ◽  
Mukadder Okuyan

Brain–computer interface (BCI) is a technology used to convert brain signals to control external devices. Researchers have designed and built many interfaces and applications in the last couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation. The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study. The sensor level EEG signals are converted to source signals using the inverse problem solution. Then, the cortical sources are calculated using sLORETA methods at nine regions marked by a neurophysiologist. The features are extracted from cortical sources by using the common spatial pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the computed cortical signals corresponding to motor imagery of the hand and foot are used to train the SVM algorithm. Then, the signals outside the training set are used to test the classification performance of the classifier. The 0.1–30 Hz and mu rhythm band-pass filtered activity is also analyzed for the EEG signals. The classification performance and recognition of the imagery improved up to 100% under some conditions for the cortical level. The cortical source signals at the regions contributing to motor commands are investigated and used to improve the classification of motor imagery.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7309
Author(s):  
Junhyuk Choi ◽  
Keun Tae Kim ◽  
Ji Hyeok Jeong ◽  
Laehyun Kim ◽  
Song Joo Lee ◽  
...  

This study aimed to develop an intuitive gait-related motor imagery (MI)-based hybrid brain-computer interface (BCI) controller for a lower-limb exoskeleton and investigate the feasibility of the controller under a practical scenario including stand-up, gait-forward, and sit-down. A filter bank common spatial pattern (FBCSP) and mutual information-based best individual feature (MIBIF) selection were used in the study to decode MI electroencephalogram (EEG) signals and extract a feature matrix as an input to the support vector machine (SVM) classifier. A successive eye-blink switch was sequentially combined with the EEG decoder in operating the lower-limb exoskeleton. Ten subjects demonstrated more than 80% accuracy in both offline (training) and online. All subjects successfully completed a gait task by wearing the lower-limb exoskeleton through the developed real-time BCI controller. The BCI controller achieved a time ratio of 1.45 compared with a manual smartwatch controller. The developed system can potentially be benefit people with neurological disorders who may have difficulties operating manual control.


Sign in / Sign up

Export Citation Format

Share Document