scholarly journals Research topic: neuromorphic engineering systems and applications. A snapshot of neuromorphic systems engineering

2014 ◽  
Vol 8 ◽  
Author(s):  
Tobi Delbruck ◽  
André van Schaik ◽  
Jennifer Hasler
2017 ◽  
Author(s):  
Alexander Laun

With a renewed global focus on anti-submarine warfare (ASW), the United States Navy will increasingly rely on unmanned underwater vehicle (UUV) technology to serve as a cost-effective force multiplier. Modern UUV development necessitates a uniquely constrained, iterative approach to the traditional submarine design spiral. Considering a broad spectrum of customer-generated requirements, the UUV conceptual design process applies the best practices of naval architecture, marine engineering, ocean engineering, systems engineering, and submersible design. This paper provides an assessment of the traditional approach to the UUV design and development process. Specifically, this paper analyzes the design philosophy for modern UUVs, provides a design framework for the UUV conceptual design process, and details specific recommendations to encourage innovation in the subsea realm.


Author(s):  
Jeremy M. Gernand

To better understand how improved understanding of uncertainty and probability concepts in an engineering systems context would affect undergraduate engineering students’ perceptions of professional responsibility and ethics as well as personal agency (one’s ability to affect the outcome of events), an assessment of these principles was conducted during a related course. A course entitled Engineering Risk Analysis was offered and conducted with a mix of undergraduate Mechanical Engineering, Chemical Engineering, Petroleum Engineering, Environmental Systems Engineering, and Architectural Engineering students. This course presented and trained students in the use of system analysis techniques from the disciplines of Reliability Engineering, Policy Analysis, and Economics for understanding how uncertain circumstances interact with technological systems to produce failures and disasters. As engineering systems become increasingly complex and command greater quantities of energy, the risk of failures even when very rare, become much more severe. While there have been previous initiatives to increase engineering students’ understanding of statistics, probability, and risk, usually in response to previous disasters, this preliminary study is the first to begin to examine how this kind of knowledge affects engineering student’s perceptions of ethics, responsibility, and their concept of how their own individual decisions affect the potential for the failure of complex systems and the consequences of such failures. Students completed 5 regular survey-based assessments to judge their qualitative and quantitative skills, personal perceptions of the causes of engineering failures, and the professional and ethical responsibilities of engineers. Analysis of the response variance and a linear regression model demonstrated some significant effects after controlling for education, age, and professional work experience. Results indicate that questions related to probabilistic understanding of risk demonstrated the most significant change during the course. Indicators of agreement with strong professional ethics and greater professional responsibility as well as personal agency did not significantly change during the course. More importantly, while personal choices on risk did not appear to reflect one’s view of how engineers actually do or should treat questions of risk professionally, the amount of previous technical work experience showed a small positive association with increased agreement on statements of ethical responsibility towards workers and the public. These findings suggest that future research is needed to assess the types of instruction and personal experience that can best encourage the combination of strong ethical responsibility and personal agency that could empower engineering students to act when they have the opportunity to reduce risk to workers, the public, or the environment.


2020 ◽  
Vol 4 (4) ◽  
pp. 35
Author(s):  
Basel Alhaji ◽  
Janine Beecken ◽  
Rüdiger Ehlers ◽  
Jan Gertheiss ◽  
Felix Merz ◽  
...  

The way humans and artificially intelligent machines interact is undergoing a dramatic change. This change becomes particularly apparent in domains where humans and machines collaboratively work on joint tasks or objects in teams, such as in industrial assembly or disassembly processes. While there is intensive research work on human–machine collaboration in different research disciplines, systematic and interdisciplinary approaches towards engineering systems that consist of or comprise human–machine teams are still rare. In this paper, we review and analyze the state of the art, and derive and discuss core requirements and concepts by means of an illustrating scenario. In terms of methods, we focus on how reciprocal trust between humans and intelligent machines is defined, built, measured, and maintained from a systems engineering and planning perspective in literature. Based on our analysis, we propose and outline three important areas of future research on engineering and operating human–machine teams for trusted collaboration. For each area, we describe exemplary research opportunities.


Author(s):  
Benoît Mosser ◽  
Alain Abergel

AbstractThe Master's degree “Outils et Systèmes de l'Astronomie et de l'Espace” (OSAE, “Astronomical and Space-based Systems Engineering”) is intended for students interested in Astronomy and Space technology. Students undergo a comprehensive training in partnership with international-level laboratories and with leading private companies. The degree provides physicists with a wide range of skills, appropriate for those whose intention is to participate in subsystems, equipment and engineering systems, and also for future project managers, working in the aerospace industry or similar technological industries or in national and European agencies. The 1-year course is given in collaboration with national and international institutions, laboratories and industries. It includes an extended training period (5 to 6 months) and a theoretical and practical specialization given by university and industrial teachers. It benefits from the network of laboratories associated with the Astronomy and Astrophysics doctorate school of the Île-de-France.


Sign in / Sign up

Export Citation Format

Share Document