scholarly journals Dissociation of Connectivity for Syntactic Irregularity and Perceptual Ambiguity in Musical Chord Stimuli

2021 ◽  
Vol 15 ◽  
Author(s):  
Chan Hee Kim ◽  
Seung-Hyun Jin ◽  
June Sic Kim ◽  
Youn Kim ◽  
Suk Won Yi ◽  
...  

Musical syntax has been studied mainly in terms of “syntactic irregularity” in harmonic/melodic sequences. However, “perceptual ambiguity” referring to the uncertainty of judgment/classification of presented stimuli can in addition be involved in our musical stimuli using three different chord sequences. The present study addresses how “syntactic irregularity” and “perceptual ambiguity” on musical syntax are dissociated, in terms of effective connectivity between the bilateral inferior frontal gyrus (IFGs) and superior temporal gyrus (STGs) by linearized time-delayed mutual information (LTDMI). Three conditions were of five-chord sequences with endings of dominant to tonic, dominant to submediant, and dominant to supertonic. The dominant to supertonic is most irregular, compared with the regular dominant to tonic. The dominant to submediant of the less irregular condition is the most ambiguous condition. In the LTDMI results, connectivity from the right to the left IFG (IFG-LTDMI) was enhanced for the most irregular condition, whereas that from the right to the left STG (STG-LTDMI) was enhanced for the most ambiguous condition (p = 0.024 in IFG-LTDMI, p < 0.001 in STG-LTDMI, false discovery rate (FDR) corrected). Correct rate was negatively correlated with STG-LTDMI, further reflecting perceptual ambiguity (p = 0.026). We found for the first time that syntactic irregularity and perceptual ambiguity coexist in chord stimulus testing musical syntax and that the two processes are dissociated in interhemispheric connectivities in the IFG and STG, respectively.

2020 ◽  
Author(s):  
Chan Hee Kim ◽  
Seung-Hyun Jin ◽  
June Sic Kim ◽  
Youn Kim ◽  
Suk Won Yi ◽  
...  

AbstractPreviously syntactic irregularity has been most studied with chord sequences. However, the same chord may be interpreted as having different harmonic functions, implying perceptual ambiguity. Hence, syntactic irregularity and perceptual ambiguity may be processed simultaneously. We devised 3 different 5-chord sequences in which the ending chord differed with the tonic (T), submediant (SM), and supertonic (ST). In terms of syntactic regularity, T is most regular, ST is most irregular. However, in terms of perceptual ambiguity, the most irregular ST had the salient highest voice. Therefore, the SM was the most ambiguous condition. We investigated how the human brain separates syntactic irregularity and perceptual ambiguity in terms of effective connectivity in bilateral inferior frontal gyri (IFGs) and superior temporal gyri (STGs) with magnetoencephalography in 19 subjects. Correct rate was lower for the most ambiguous chord (SM) (P = 0.020) as expected. Connectivity from the right to the left IFG was enhanced for the most irregular chord (ST) (P = 0.024, false discovery rate (FDR) corrected), whereas connectivity from the right to the left STG was enhanced for the most ambiguous chord (SM) (P < 0.001, FDR corrected). The correct rate was negatively correlated with connectivity in the STG, further reflecting perceptual ambiguity (P = 0.026). We found that syntactic irregularity and perceptual ambiguity in music are dissociated in connectivity between bilateral IFGs and STGs, respectively.Significance StatementWe provide the first neurophysiological evidence of the processing of perceptual ambiguity, other than syntactic irregularity, implied in musical chords. We found that the notion of “perceptually ambiguity” is applicable to musical chord stimuli different in syntactic irregularity, and that perceptual ambiguity is separate from syntactic irregularity. Our data demonstrate that the brain interprets the three conditions of musical chords as both “from regular to irregular” and “from ambiguous to unambiguous” conditions simultaneously. This study is the first to unveil dissociation of connectivity by syntactic irregularity and perceptual ambiguity involved in musical chord stimuli.


2006 ◽  
Vol 18 (11) ◽  
pp. 1789-1798 ◽  
Author(s):  
Angela Bartolo ◽  
Francesca Benuzzi ◽  
Luca Nocetti ◽  
Patrizia Baraldi ◽  
Paolo Nichelli

Humor is a unique ability in human beings. Suls [A two-stage model for the appreciation of jokes and cartoons. In P. E. Goldstein & J. H. McGhee (Eds.), The psychology of humour. Theoretical perspectives and empirical issues. New York: Academic Press, 1972, pp. 81–100] proposed a two-stage model of humor: detection and resolution of incongruity. Incongruity is generated when a prediction is not confirmed in the final part of a story. To comprehend humor, it is necessary to revisit the story, transforming an incongruous situation into a funny, congruous one. Patient and neuroimaging studies carried out until now lead to different outcomes. In particular, patient studies found that right brain-lesion patients have difficulties in humor comprehension, whereas neuroimaging studies suggested a major involvement of the left hemisphere in both humor detection and comprehension. To prevent activation of the left hemisphere due to language processing, we devised a nonverbal task comprising cartoon pairs. Our findings demonstrate activation of both the left and the right hemispheres when comparing funny versus nonfunny cartoons. In particular, we found activation of the right inferior frontal gyrus (BA 47), the left superior temporal gyrus (BA 38), the left middle temporal gyrus (BA 21), and the left cerebellum. These areas were also activated in a nonverbal task exploring attribution of intention [Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage, 11, 157–166, 2000]. We hypothesize that the resolution of incongruity might occur through a process of intention attribution. We also asked subjects to rate the funniness of each cartoon pair. A parametric analysis showed that the left amygdala was activated in relation to subjective amusement. We hypothesize that the amygdala plays a key role in giving humor an emotional dimension.


2017 ◽  
Vol 51 (4) ◽  
pp. 399-415 ◽  
Author(s):  
Bobbie Jean Koen ◽  
Jacqueline Hawkins ◽  
Xi Zhu ◽  
Ben Jansen ◽  
Weihua Fan ◽  
...  

Fluency is used as an indicator of reading proficiency. Many students with reading disabilities are unable to benefit from typical interventions. This study is designed to replicate Lorusso, Facoetti, Paganoni, Pezzani, and Molteni’s (2006) work using FlashWord, a computer program that tachistoscopically presents words in the right or left visual hemi-field in English and locates through fMRI imaging the processing areas involved in fluency development. Our participants were 15 students who were ages 8 to 19 years and had reading disabilities randomly assigned to Intervention ( n = 9) and Delayed Intervention ( n = 6) groups. Functional imaging studies focused on analyzing activations in the left hemisphere (LH) superior temporal gyrus, the inferior frontal gyrus, and the LH inferior occipito-temporal/fusiform area (visual-word form area [VWFA]). Analysis of intervention data showed that 6 of the 9 Intervention group participants (67%) achieved levels of automatic processing and increased their reading rate by an average of 20 words per minute after participating in the FlashWord intervention. Analyses of fMRI group activation maps and mean activation levels in regions of interest document processing changes in VWFA activations that could be related to the increase in reading speed and confirm these locations as essential to developing fluency.


CNS Spectrums ◽  
2013 ◽  
Vol 21 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Erwin Lemche ◽  
Simon A. Surguladze ◽  
Michael J. Brammer ◽  
Mary L. Phillips ◽  
Mauricio Sierra ◽  
...  

ObjectiveThe cerebral mechanisms of traits associated with depersonalization-derealization disorder (DPRD) remain poorly understood.MethodHappy and sad emotion expressions were presented to DPRD and non-referred control (NC) subjects in an implicit event-related functional magnetic resonance imaging (fMRI) design, and correlated with self report scales reflecting typical co-morbidities of DPRD: depression, dissociation, anxiety, somatization.ResultsSignificant differences between the slopes of the two groups were observed for somatization in the right temporal operculum (happy) and ventral striatum, bilaterally (sad). Discriminative regions for symptoms of depression were the right pulvinar (happy) and left amygdala (sad). For dissociation, discriminative regions were the left mesial inferior temporal gyrus (happy) and left supramarginal gyrus (sad). For state anxiety, discriminative regions were the left inferior frontal gyrus (happy) and parahippocampal gyrus (sad). For trait anxiety, discriminative regions were the right caudate head (happy) and left superior temporal gyrus (sad).DiscussionThe ascertained brain regions are in line with previous findings for the respective traits. The findings suggest separate brain systems for each trait.ConclusionOur results do not justify any bias for a certain nosological category in DPRD.


2019 ◽  
Vol 11 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Mimpei Kawamura ◽  
Nobuhiro Takahashi ◽  
Yasutaka Kobayashi

Several reports on repetitive transcranial magnetic stimulation (rTMS) for the treatment of aphasia caused by damage to the left inferior frontal gyrus state that low-frequency rTMS therapy for the right inferior frontal gyrus, which is contralateral to the focus area, is effective for improving verbal expression. However, most of these reports have studied the effects of rTMS therapy for comparatively mild aphasia. This study attempted to perform low-frequency rTMS on the right posterior superior temporal gyrus (BA22), which is the center for language reception for aphasia patients with a drastic decline in verbal expression due to damage to the left inferior frontal gyrus and a considerable decline in language perception. The participants performed a language task that was displayed on a computer monitor during rTMS. In addition, intensive speech-language and hearing therapy was performed by the therapist after rTMS. This study reports that a resultant improvement in language perception was observed in the activated brain regions based on neuropsychological tests and functional magnetic resonance imaging. This study is considered to be significant as it highlights a new method of rTMS treatment for severe aphasia.


2008 ◽  
Vol 20 (3) ◽  
pp. 541-552 ◽  
Author(s):  
Eveline Geiser ◽  
Tino Zaehle ◽  
Lutz Jancke ◽  
Martin Meyer

The present study investigates the neural correlates of rhythm processing in speech perception. German pseudosentences spoken with an exaggerated (isochronous) or a conversational (nonisochronous) rhythm were compared in an auditory functional magnetic resonance imaging experiment. The subjects had to perform either a rhythm task (explicit rhythm processing) or a prosody task (implicit rhythm processing). The study revealed bilateral activation in the supplementary motor area (SMA), extending into the cingulate gyrus, and in the insulae, extending into the right basal ganglia (neostriatum), as well as activity in the right inferior frontal gyrus (IFG) related to the performance of the rhythm task. A direct contrast between isochronous and nonisochronous sentences revealed differences in lateralization of activation for isochronous processing as a function of the explicit and implicit tasks. Explicit processing revealed activation in the right posterior superior temporal gyrus (pSTG), the right supramarginal gyrus, and the right parietal operculum. Implicit processing showed activation in the left supramarginal gyrus, the left pSTG, and the left parietal operculum. The present results indicate a function of the SMA and the insula beyond motor timing and speak for a role of these brain areas in the perception of acoustically temporal intervals. Secondly, the data speak for a specific task-related function of the right IFG in the processing of accent patterns. Finally, the data sustain the assumption that the right secondary auditory cortex is involved in the explicit perception of auditory suprasegmental cues and, moreover, that activity in the right secondary auditory cortex can be modulated by top-down processing mechanisms.


2018 ◽  
Vol 115 (51) ◽  
pp. E12034-E12042 ◽  
Author(s):  
Arseny A. Sokolov ◽  
Peter Zeidman ◽  
Michael Erb ◽  
Philippe Ryvlin ◽  
Karl J. Friston ◽  
...  

The perception of actions underwrites a wide range of socio-cognitive functions. Previous neuroimaging and lesion studies identified several components of the brain network for visual biological motion (BM) processing, but interactions among these components and their relationship to behavior remain little understood. Here, using a recently developed integrative analysis of structural and effective connectivity derived from high angular resolution diffusion imaging (HARDI) and functional magnetic resonance imaging (fMRI), we assess the cerebro-cerebellar network for processing of camouflaged point-light BM. Dynamic causal modeling (DCM) informed by probabilistic tractography indicates that the right superior temporal sulcus (STS) serves as an integrator within the temporal module. However, the STS does not appear to be a “gatekeeper” in the functional integration of the occipito-temporal and frontal regions: The fusiform gyrus (FFG) and middle temporal cortex (MTC) are also connected to the right inferior frontal gyrus (IFG) and insula, indicating multiple parallel pathways. BM-specific loops of effective connectivity are seen between the left lateral cerebellar lobule Crus I and right STS, as well as between the left Crus I and right insula. The prevalence of a structural pathway between the FFG and STS is associated with better BM detection. Moreover, a canonical variate analysis shows that the visual sensitivity to BM is best predicted by BM-specific effective connectivity from the FFG to STS and from the IFG, insula, and STS to the early visual cortex. Overall, the study characterizes the architecture of the cerebro-cerebellar network for BM processing and offers prospects for assessing the social brain.


2020 ◽  
Author(s):  
Isabelle Royal ◽  
Dominique T Vuvan ◽  
Benjamin Rich Zendel ◽  
Nicolas Robitaille ◽  
Marc Schönwiesner ◽  
...  

Pitch discrimination tasks typically engage the superior temporal gyrus and the right inferior frontal gyrus. It is currently unclear whether these regions are equally involved in the processing of incongruous notes in melodies, which requires the representation of musical structure (tonality) in addition to pitch discrimination. To this aim, 14 participants completed two tasks while undergoing functional magnetic resonance imaging, one in which they had to identify a pitch change in a series of non-melodic repeating tones and a second in which they had to identify an incongruous note in a tonal melody. In both tasks, the deviants activated the right superior temporal gyrus. A contrast between deviants in the melodic task and deviants in the non-melodic task (melodic &gt; non-melodic) revealed additional activity in the right inferior parietal lobule. Activation in the inferior parietal lobule likely represents processes related to the maintenance of tonal pitch structure in working memory during pitch discrimination.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiaying Gong ◽  
Junjing Wang ◽  
Shaojuan Qiu ◽  
Pan Chen ◽  
Zhenye Luo ◽  
...  

Abstract Identification of intrinsic brain activity differences and similarities between major depression (MDD) and bipolar disorder (BD) is necessary. However, results have not yet yielded consistent conclusions. A meta-analysis of whole-brain resting-state functional MRI (rs-fMRI) studies that explored differences in the amplitude of low-frequency fluctuation (ALFF) between patients (including MDD and BD) and healthy controls (HCs) was conducted using seed-based d mapping software. Systematic literature search identified 50 studies comparing 1399 MDD patients and 1332 HCs, and 15 studies comparing 494 BD patients and 593 HCs. MDD patients displayed increased ALFF in the right superior frontal gyrus (SFG) (including the medial orbitofrontal cortex, medial prefrontal cortex [mPFC], anterior cingulate cortex [ACC]), bilateral insula extending into the striatum and left supramarginal gyrus and decreased ALFF in the bilateral cerebellum, bilateral precuneus, and left occipital cortex compared with HCs. BD showed increased ALFF in the bilateral inferior frontal gyrus, bilateral insula extending into the striatum, right SFG, and right superior temporal gyrus (STG) and decreased ALFF in the bilateral precuneus, left cerebellum (extending to the occipital cortex), left ACC, and left STG. In addition, MDD displayed increased ALFF in the left lingual gyrus, left ACC, bilateral precuneus/posterior cingulate gyrus, and left STG and decreased ALFF in the right insula, right mPFC, right fusiform gyrus, and bilateral striatum relative to BD patients. Conjunction analysis showed increased ALFF in the bilateral insula, mPFC, and decreased ALFF in the left cerebellum in both disorders. Our comprehensive meta-analysis suggests that MDD and BD show a common pattern of aberrant regional intrinsic brain activity which predominantly includes the insula, mPFC, and cerebellum, while the limbic system and occipital cortex may be associated with spatially distinct patterns of brain function, which provide useful insights for understanding the underlying pathophysiology of brain dysfunction in affective disorders, and developing more targeted and efficacious treatment and intervention strategies.


2020 ◽  
Vol 12 ◽  
Author(s):  
Junyu Lin ◽  
Xinran Xu ◽  
Yanbing Hou ◽  
Jing Yang ◽  
Huifang Shang

Purpose: This study aimed to identify consistent gray matter volume (GMV) changes in the two subtypes of multiple system atrophy (MSA), including parkinsonism subtype (MSA-P), and cerebellar subtype (MSA-C), by conducting a voxel-wise meta-analysis of whole brain voxel-based morphometry (VBM) studies.Method: VBM studies comparing MSA-P or MSA-C and healthy controls (HCs) were systematically searched in the PubMed, Embase, and Web of Science published from 1974 to 20 October 2020. A quantitative meta-analysis of VBM studies on MSA-P or MSA-C was performed using the effect size-based signed differential mapping (ES-SDM) method separately. A complementary analysis was conducted using the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) method, which allows a familywise error rate (FWE) correction for multiple comparisons of the results, for further validation of the results.Results: Ten studies were included in the meta-analysis of MSA-P subtype, comprising 136 MSA-P patients and 211 HCs. Five studies were included in the meta-analysis of MSA-C subtype, comprising 89 MSA-C patients and 134 HCs. Cerebellum atrophy was detected in both MSA-P and MSA-C, whereas basal ganglia atrophy was only detected in MSA-P. Cerebral cortex atrophy was detected in both subtypes, with predominant impairment of the superior temporal gyrus, inferior frontal gyrus, temporal pole, insula, and amygdala in MSA-P and predominant impairment of the superior temporal gyrus, middle temporal gyrus, fusiform gyrus, and lingual gyrus in MSA-C. Most of these results survived the FWE correction in the complementary analysis, except for the bilateral amygdala and the left caudate nucleus in MSA-P, and the right superior temporal gyrus and the right middle temporal gyrus in MSA-C. These findings remained robust in the jackknife sensitivity analysis, and no significant heterogeneity was detected.Conclusion: A different pattern of brain atrophy between MSA-P and MSA-C detected in the current study was in line with clinical manifestations and provided the evidence of the pathophysiology of the two subtypes of MSA.


Sign in / Sign up

Export Citation Format

Share Document