scholarly journals Involvement of Calcium-Dependent Pathway and β Subunit-Interaction in Neuronal Migration and Callosal Projection Deficits Caused by the Cav1.2 I1166T Mutation in Developing Mouse Neocortex

2021 ◽  
Vol 15 ◽  
Author(s):  
Nao Nakagawa-Tamagawa ◽  
Emi Kirino ◽  
Kohtaroh Sugao ◽  
Hidetaka Nagata ◽  
Yoshiaki Tagawa

Introduction: Gain-of-function mutations in the L-type Ca2+ channel Cav1.2 cause Timothy syndrome (TS), a multisystem disorder associated with neurologic symptoms, including autism spectrum disorder (ASD), seizures, and intellectual disability. Cav1.2 plays key roles in neural development, and its mutation can affect brain development and connectivity through Ca2+-dependent and -independent mechanisms. Recently, a gain-of-function mutation, I1166T, in Cav1.2 was identified in patients with TS-like disorder. Its channel properties have been analyzed in vitro but in vivo effects of this mutation on brain development remain unexplored.Methods:In utero electroporation was performed on ICR mice at embryonic day 15 to express GFP, wild-type, and mutant Cav1.2 channels into cortical layer 2/3 excitatory neurons in the primary somatosensory area. The brain was fixed at postnatal days 14–16, sliced, and scanned using confocal microscopy. Neuronal migration of electroporated neurons was examined in the cortex of the electroporated hemisphere, and callosal projection was examined in the white matter and contralateral hemisphere.Results: Expression of the I1166T mutant in layer 2/3 neurons caused migration deficits in approximately 20% of electroporated neurons and almost completely diminished axonal arborization in the contralateral hemisphere. Axonal projection in the white matter was not affected. We introduced second mutations onto Cav1.2 I1166T; L745P mutation blocks Ca2+ influx through Cav1.2 channels and inhibits the Ca2+-dependent pathway, and the W440A mutation blocks the interaction of the Cav1.2 α1 subunit to the β subunit. Both second mutations recovered migration and projection.Conclusion: This study demonstrated that the Cav1.2 I1166T mutation could affect two critical steps during cerebrocortical development, migration and axonal projection, in the mouse brain. This is mediated through Ca2+-dependent pathway downstream of Cav1.2 and β subunit-interaction.

2020 ◽  
Vol 117 (18) ◽  
pp. 10035-10044
Author(s):  
Xiaojie Wang ◽  
Verginia C. Cuzon Carlson ◽  
Colin Studholme ◽  
Natali Newman ◽  
Matthew M. Ford ◽  
...  

One factor that contributes to the high prevalence of fetal alcohol spectrum disorder (FASD) is binge-like consumption of alcohol before pregnancy awareness. It is known that treatments are more effective with early recognition of FASD. Recent advances in retrospective motion correction for the reconstruction of three-dimensional (3D) fetal brain MRI have led to significant improvements in the quality and resolution of anatomical and diffusion MRI of the fetal brain. Here, a rhesus macaque model of FASD, involving oral self-administration of 1.5 g/kg ethanol per day beginning prior to pregnancy and extending through the first 60 d of a 168-d gestational term, was utilized to determine whether fetal MRI could detect alcohol-induced abnormalities in brain development. This approach revealed differences between ethanol-exposed and control fetuses at gestation day 135 (G135), but not G110 or G85. At G135, ethanol-exposed fetuses had reduced brainstem and cerebellum volume and water diffusion anisotropy in several white matter tracts, compared to controls. Ex vivo electrophysiological recordings performed on fetal brain tissue obtained immediately following MRI demonstrated that the structural abnormalities observed at G135 are of functional significance. Specifically, spontaneous excitatory postsynaptic current amplitudes measured from individual neurons in the primary somatosensory cortex and putamen strongly correlated with diffusion anisotropy in the white matter tracts that connect these structures. These findings demonstrate that exposure to ethanol early in gestation perturbs development of brain regions associated with motor control in a manner that is detectable with fetal MRI.


Cytoskeleton ◽  
2016 ◽  
Vol 73 (9) ◽  
pp. Spc1-Spc1
Author(s):  
Tiago J. Dantas ◽  
Aurelie Carabalona ◽  
Daniel Jun-Kit Hu ◽  
Richard B. Vallee

Author(s):  
Bryce L. Geeraert ◽  
Jess E. Reynolds ◽  
Catherine Lebel

Diffusion magnetic resonance imaging (dMRI) is a versatile tool which can be applied to investigate brain microstructure. This chapter outlines brain development trajectories from infancy to adulthood as described by dMRI. The chapter focuses on white matter development, as dMRI is particularly well suited to describing white matter tissue properties. The chapter also discusses sources of individual variation which are simultaneously fascinating and confounding to research efforts. Next, the chapter discusses links between white matter development and cognition, with specific examples drawn from reading research. Additional techniques which may complement future diffusion-based research are introduced in the chapter’s final section.


Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mira Jakovcevski ◽  
Geraldine Zimmer-Bensch

Abstract Brain development comprises a fine-tuned ensemble of molecular processes that need to be orchestrated in a very coordinated way throughout time and space. A wide array of epigenetic mechanisms, ranging from DNA methylation and histone modifications to noncoding RNAs, have been identified for their major role in guiding developmental processes such as progenitor proliferation, neuronal migration, and differentiation through precise regulation of gene expression programs. The importance of epigenetic processes during development is reflected by the high prevalence of neurodevelopmental diseases which are caused by a lack or mutation of genes encoding for transcription factors and other epigenetic regulators. Most of these factors process central functions for proper brain development, and respective mutations lead to severe cognitive defects. A better understanding of epigenetic programs during development might open new routes toward better treatment options for related diseases.


2018 ◽  
Vol 9 (10) ◽  
Author(s):  
Weizhe Liu ◽  
Fang Han ◽  
Shuai Qu ◽  
Yuanfei Yao ◽  
Jianxiang Zhao ◽  
...  

2018 ◽  
Vol 29 (2) ◽  
pp. 827-837 ◽  
Author(s):  
Riccardo Cafiero ◽  
Jens Brauer ◽  
Alfred Anwander ◽  
Angela D Friederici

2006 ◽  
Vol 281 (34) ◽  
pp. 24104-24110 ◽  
Author(s):  
Patricia Hidalgo ◽  
Giovanni Gonzalez-Gutierrez ◽  
Jennie Garcia-Olivares ◽  
Alan Neely

2020 ◽  
Vol 14 ◽  
Author(s):  
Amy E. Sutherland ◽  
Tamara Yawno ◽  
Margie Castillo-Melendez ◽  
Beth J. Allison ◽  
Atul Malhotra ◽  
...  

2007 ◽  
Vol 38 (1) ◽  
pp. 89-100 ◽  
Author(s):  
T. van Amelsvoort ◽  
J. Zinkstok ◽  
M. Figee ◽  
E. Daly ◽  
R. Morris ◽  
...  

BackgroundVelo-cardio-facial syndrome (VCFS) is associated with deletions at chromosome 22q11, abnormalities in brain anatomy and function, and schizophrenia-like psychosis. Thus it is assumed that one or more genes within the deleted region are crucial to brain development. However, relatively little is known about how genetic variation at 22q11 affects brain structure and function. One gene on 22q11 is catechol-O-methyltransferase (COMT): an enzyme that degrades dopamine and contains a functional polymorphism (Val158Met) affecting enzyme activity. Here, we investigated the effect of COMT Val158Met polymorphism on brain anatomy and cognition in adults with VCFS.MethodThe COMT Val158Met polymorphism was genotyped for 26 adults with VCFS on whom DNA was available. We explored its effects on regional brain volumes using hand tracing approaches; on regional grey- and white-matter density using computerized voxel-based analyses; and measures of attention, IQ, memory, executive and visuospatial function using a comprehensive neuropsychological test battery.ResultsAfter corrections for multiple comparisons Val-hemizygous subjects, compared with Met-hemizygotes, had a significantly larger volume of frontal lobes. Also, Val-hemizygotes had significantly increased grey matter density in cerebellum, brainstem, and parahippocampal gyrus, and decreased white matter density in the cerebellum. No significant effects of COMT genotype on neurocognitive performance were found.ConclusionsCOMT genotype effects on brain anatomy in VCFS are not limited to frontal regions but also involve other structures previously implicated in VCFS. This suggests variation in COMT activity is implicated in brain development in VCFS.


Sign in / Sign up

Export Citation Format

Share Document