scholarly journals MicroRNA Dysregulation in Epilepsy: From Pathogenetic Involvement to Diagnostic Biomarker and Therapeutic Agent Development

2021 ◽  
Vol 14 ◽  
Author(s):  
Jialu Wang ◽  
Jiuhan Zhao

Epilepsy is the result of a group of transient abnormalities in brain function caused by an abnormal, highly synchronized discharge of brain neurons. MicroRNA (miRNA) is a class of endogenous non-coding single-stranded RNA molecules that participate in a series of important biological processes. Recent studies demonstrated that miRNAs are involved in a variety of central nervous system diseases, including epilepsy. Although the exact mechanism underlying the role of miRNAs in epilepsy pathogenesis is still unclear, these miRNAs may be involved in the inflammatory response in the nervous system, neuronal necrosis and apoptosis, dendritic growth, synaptic remodeling, glial cell proliferation, epileptic circuit formation, impairment of neurotransmitter and receptor function, and other processes. Here, we discuss miRNA metabolism and the roles of miRNA in epilepsy pathogenesis and evaluate miRNA as a potential new biomarker for the diagnosis of epilepsy, which enhances our understanding of disease processes.

Author(s):  
Zhong-wei Zhang

ABSTRACT:The mammalian neocortex is the largest structure in the brain, and plays a key role in brain function. A critical period for the development of the neocortex is the early postnatal life, when the majority of synapses are formed and when much of synaptic remodeling takes place. Early studies suggest that initial synaptic connections lack precision, and this rudimentary wiring pattern is refined by experience-related activity through selective elimination and consolidation. This view has been challenged by recent studies revealing the presence of a relatively precise pattern of connections before the onset of sensory experience. The recent data support a model in which specificity of neuronal connections is largely determined by genetic factors. Spontaneous activity is required for the formation of neural circuits, but whether it plays an instructive role is still controversial. Neurotransmitters including acetylcholine, serotonin, and γ-Aminobutyric acid (GABA) may have key roles in the regulation of spontaneous activity, and in the maturation of synapses in the developing brain.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Antonella Lauri ◽  
Paola Bertucci ◽  
Detlev Arendt

In vertebrates, neurotrophic signaling plays an important role in neuronal development, neural circuit formation, and neuronal plasticity, but its evolutionary origin remains obscure. We found and validated nucleotide sequences encoding putative neurotrophic ligands (neurotrophin, NT) and receptors (Trk and p75) in two annelids,Platynereis dumerilii(Errantia) andCapitella teleta(Sedentaria, for which some sequences were found recently by Wilson, 2009). Predicted protein sequences and structures ofPlatynereisneurotrophic molecules reveal a high degree of conservation with the vertebrate counterparts; some amino acids signatures present in the annelid Trk sequences are absent in the basal chordate amphioxus, reflecting secondary loss in the cephalochordate lineage. In addition, expression analysis of NT, Trk, and p75 duringPlatynereisdevelopment by whole-mount mRNAin situhybridization supports a role of these molecules in nervous system and circuit development. These annelid data corroborate the hypothesis that the neurotrophic signaling and its involvement in shaping neural networks predate the protostome-deuterostome split and were present in bilaterian ancestors.


2004 ◽  
Vol 4 ◽  
pp. 531-535 ◽  
Author(s):  
Jean-Francois Blain ◽  
Judes Poirier

This paper reviews recent literature on the role of lipoprotein lipase in the central nervous system with a focus on its recently described role in synaptic remodeling. This novel role could have implication for Alzheimer's disease treatment.


Author(s):  
Pin-Chun Chen ◽  
Lauren N. Whitehurst ◽  
Sara C. Mednick

AbstractRecent investigations have implicated the parasympathetic branch of the autonomic nervous system (ANS) in higher-order executive functions. These actions are purported to occur through ANS’s modulation of the prefrontal cortex, with parasympathetic activity during wake associated with working memory ability (WM). Compared with wake, sleep is a period with substantially greater parasympathetic tone. Recent work has reported that sleep may also contribute to improvement in WM. Here, we examined the role of cardiac parasympathetic activity during sleep on WM improvement in healthy young adults. Participants were tested in an operation span task (OSpan) in the morning and evening, and during the inter-test period subjects either experienced a nap or wake. We measured high frequency heart rate variability (HF HRV) as an index of cardiac, parasympathetic activity during both wake and sleep. Participants showed the expected boost in parasympathetic activity during nap, compared with wake, as well as greater WM improvement after a nap compared with an equivalent period awake. Furthermore, parasympathetic activity during sleep, but not wake, was significantly correlated with WM improvement. Together these results indicate that the natural boost in parasympathetic activity during sleep has substantial benefits to gains in prefrontal executive function in young adults. We present a conceptual model illustrating the interaction between sleep, autonomic activity, and prefrontal brain function, and highlight open research questions that will facilitate understanding of the factors that contribute to executive abilities in young adults, as well as in cognitive aging.Significance StatementRecently, the neurovisceral integration model has implicated activity on the parasympathetic branch of the autonomic nervous system (ANS) during wake in executive functioning. Parasympathetic activity peaks during deep sleep, and sleep has been shown to facilitate executive functioning. Yet, the role of parasympathetic activity during sleep for executive functioning is not known. Herein, participants demonstrated increased parasympathetic activity during deep sleep, sleep-dependent WM improvement, and associations between performance gains and parasympathetic activity in sleep, not wake. Our conceptual model illustrates the interaction between sleep, autonomic activity, and prefrontal brain function that may contribute to executive abilities in young adults and to cognitive aging.


2011 ◽  
Vol 71 (10) ◽  
Author(s):  
J Arnold ◽  
ML Barcena de Arellano ◽  
C Rüster ◽  
A Schneider ◽  
S Mechsner

1981 ◽  
Vol 97 (1) ◽  
pp. 91-97 ◽  
Author(s):  
H. Storm ◽  
C. van Hardeveld ◽  
A. A. H. Kassenaar

Abstract. Basal plasma levels for adrenalin (A), noradrenalin (NA), l-triiodothyronine (T3), and l-thyroxine (T4) were determined in rats with a chronically inserted catheter. The experiments described in this report were started 3 days after the surgical procedure when T3 and T4 levels had returned to normal. Basal levels for the catecholamines were reached already 4 h after the operation. The T3/T4 ratio in plasma was significantly increased after 3, 7, and 14 days in rats kept at 4°C and the same holds for the iodide in the 24-h urine after 7 and 14 days at 4°C. The venous NA plasma concentration was increased 6- to 12-fold during the same period of exposure to cold, whereas the A concentration remained at the basal level. During infusion of NA at 23°C the T3/T4 ratio in plasma was significantly increased after 7 days compared to pair-fed controls, and the same holds for the iodide excretion in the 24-h urine. This paper presents further evidence for a role of the sympathetic nervous system on T4 metabolism in rats at resting conditions.


Author(s):  
D.A. Dubko ◽  
◽  
G.P. Smoliakova ◽  
O.I. Kashura ◽  
O.V. Mazurina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document