scholarly journals Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord

2021 ◽  
Vol 14 ◽  
Author(s):  
Thomas Leth Jensen ◽  
Casper René Gøtzsche ◽  
David P. D. Woldbye

In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.

2021 ◽  
Vol 2 (2) ◽  
pp. 100-106
Author(s):  
Aleksandra I. Pavlyuchkova ◽  
Aleksey S. Kotov

In childhood, various infectious, autoimmune, genetic diseases can manifest. We present a case of fatal encephalomyelopolyradiculoneuritis of unknown etiology in a 9-year-old child. Patient N.K. in February 2019, noted an increase in temperature to subfebrile values, received symptomatic and antibiotic therapy without effect. An increase in protein and lymphocytes was found in the cerebrospinal fluid. According to MRI data, the emergence of more and more foci of the pathological signal in the brain and spinal cord, cranial nerves and nerve roots of the lumbar plexus was noted. Known infectious and autoimmune diseases were excluded. Despite active therapy with glucocorticoids, antibiotics, antiviral drugs, immunoglobulin, the disease continued to progress, and the patient died in April 2020.


2017 ◽  
Vol 114 (29) ◽  
pp. E5920-E5929 ◽  
Author(s):  
Charles Shyng ◽  
Hemanth R. Nelvagal ◽  
Joshua T. Dearborn ◽  
Jaana Tyynelä ◽  
Robert E. Schmidt ◽  
...  

Infantile neuronal ceroid lipofuscinosis (INCL, or CLN1 disease) is an inherited neurodegenerative storage disorder caused by a deficiency of the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). It was widely believed that the pathology associated with INCL was limited to the brain, but we have now found unexpectedly profound pathology in the human INCL spinal cord. Similar pathological changes also occur at every level of the spinal cord of PPT1-deficient (Ppt1−/−) mice before the onset of neuropathology in the brain. Various forebrain-directed gene therapy approaches have only had limited success in Ppt1−/− mice. Targeting the spinal cord via intrathecal administration of an adeno-associated virus (AAV) gene transfer vector significantly prevented pathology and produced significant improvements in life span and motor function in Ppt1−/− mice. Surprisingly, forebrain-directed gene therapy resulted in essentially no PPT1 activity in the spinal cord, and vice versa. This leads to a reciprocal pattern of histological correction in the respective tissues when comparing intracranial with intrathecal injections. However, the characteristic pathological features of INCL were almost completely absent in both the brain and spinal cord when intracranial and intrathecal injections of the same AAV vector were combined. Targeting both the brain and spinal cord also produced dramatic and synergistic improvements in motor function with an unprecedented increase in life span. These data show that spinal cord pathology significantly contributes to the clinical progression of INCL and can be effectively targeted therapeutically. This has important implications for the delivery of therapies in INCL, and potentially in other similar disorders.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1135
Author(s):  
Bhubanananda Sahu ◽  
Isha Chug ◽  
Hemant Khanna

The eye is at the forefront of developing therapies for genetic diseases. With the FDA approval of the first gene-therapy drug for a form of congenital blindness, numerous studies have been initiated to develop gene therapies for other forms of eye diseases. These examinations have revealed new information about the benefits as well as restrictions to using drug-delivery routes to the different parts of the eye. In this article, we will discuss a brief history of gene therapy and its importance to the eye and ocular delivery landscape that is currently being investigated, and provide insights into their advantages and disadvantages. Efficient delivery routes and vehicle are crucial for an effective, safe, and longer-lasting therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaona Acharjee ◽  
Paul M. K. Gordon ◽  
Benjamin H. Lee ◽  
Justin Read ◽  
Matthew L. Workentine ◽  
...  

AbstractMicroglia play an important role in the pathogenesis of multiple sclerosis and the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). To more fully understand the role of microglia in EAE we characterized microglial transcriptomes before the onset of motor symptoms (pre-onset) and during symptomatic EAE. We compared the transcriptome in brain, where behavioral changes are initiated, and spinal cord, where damage is revealed as motor and sensory deficits. We used a RiboTag strategy to characterize ribosome-bound mRNA only in microglia without incurring possible transcriptional changes after cell isolation. Brain and spinal cord samples clustered separately at both stages of EAE, indicating regional heterogeneity. Differences in gene expression were observed in the brain and spinal cord of pre-onset and symptomatic animals with most profound effects in the spinal cord of symptomatic animals. Canonical pathway analysis revealed changes in neuroinflammatory pathways, immune functions and enhanced cell division in both pre-onset and symptomatic brain and spinal cord. We also observed a continuum of many pathways at pre-onset stage that continue into the symptomatic stage of EAE. Our results provide additional evidence of regional and temporal heterogeneity in microglial gene expression patterns that may help in understanding mechanisms underlying various symptomology in MS.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii41-ii41
Author(s):  
Junjie Zhen ◽  
Lei Wen ◽  
Shaoqun Li ◽  
Mingyao Lai ◽  
Changguo Shan ◽  
...  

Abstract BACKGROUND According to EANO-ESMO clinical practice guidelines, the MRI findings of LM are divided into 4 types, namely linear enhancement (type A), nodular enhancement (type B), linear combined with nodular enhancement (type C), and sign of hydrocephalus (type D). METHODS The MRI features of brain and spinal cord in patients diagnosed with NSCLC-LM in Guangdong Sanjiu Brain Hospital from 2010 until 2019 were investigated, and then were classified into 4 types. The imaging features were analyzed. RESULTS A total of 80 patients were enrolled in the study. The median age of the patients was 53.5 years old, and the median time from the initial diagnosis to the confirmed diagnosis of LM was 11.6 months. The results of enhanced MRI examination of the brain in 79 cases showed that the number of cases with enhancements of type A, B, C and D were 50 (63.3%), 0, 26 (32.9%) and 3 (3.8%), respectively, and that LM with metastases to the brain parenchyma was found in 42 cases (53.2%). The results of enhanced MRI examination of spinal cord in 59 cases showed that there were only enhancements of type A and C in 40 cases (67.8%) and 3 cases (5.0%), and no enhancement sign in the other 16 cases (27.2%). CONCLUSION MRI examination of brain and spinal cord will improve the detection rate of LM. The MRI features of NSCLC-LM in real world are mainly characterized by the linear enhancements of brain and spinal cord, followed by linear combined with nodular enhancement. The enhancements of type B and type D are rare in clinic. Almost half of the patients have LM and metastases to the brain parenchyma. Therefore, the differentiation of tumor metastases is needed to be paid attention to for the early diagnosis and the formulation of reasonable treatment plans.


2020 ◽  
Vol 21 (3) ◽  
pp. 777 ◽  
Author(s):  
Lewis E. Fry ◽  
Caroline F. Peddle ◽  
Alun R. Barnard ◽  
Michelle E. McClements ◽  
Robert E. MacLaren

RNA editing aims to treat genetic disease through altering gene expression at the transcript level. Pairing site-directed RNA-targeting mechanisms with engineered deaminase enzymes allows for the programmable correction of G>A and T>C mutations in RNA. This offers a promising therapeutic approach for a range of genetic diseases. For inherited retinal degenerations caused by point mutations in large genes not amenable to single-adeno-associated viral (AAV) gene therapy such as USH2A and ABCA4, correcting RNA offers an alternative to gene replacement. Genome editing of RNA rather than DNA may offer an improved safety profile, due to the transient and potentially reversible nature of edits made to RNA. This review considers the current site-directing RNA editing systems, and the potential to translate these to the clinic for the treatment of inherited retinal degeneration.


Sign in / Sign up

Export Citation Format

Share Document