scholarly journals Minireview of Epilepsy Detection Techniques Based on Electroencephalogram Signals

2021 ◽  
Vol 15 ◽  
Author(s):  
Guangda Liu ◽  
Ruolan Xiao ◽  
Lanyu Xu ◽  
Jing Cai

Epilepsy is one of the most common neurological disorders typically characterized by recurrent and uncontrollable seizures, which seriously affects the quality of life of epilepsy patients. The effective tool utilized in the clinical diagnosis of epilepsy is the Electroencephalogram (EEG). The emergence of machine learning promotes the development of automated epilepsy detection techniques. New algorithms are continuously introduced to shorten the detection time and improve classification accuracy. This minireview summarized the latest research of epilepsy detection techniques that focused on acquiring, preprocessing, feature extraction, and classification of epileptic EEG signals. The application of seizure prediction and localization based on EEG signals in the diagnosis of epilepsy was also introduced. And then, the future development trend of epilepsy detection technology has prospected at the end of the article.

2020 ◽  
Vol 1 (2) ◽  
pp. 01-05
Author(s):  
Bin Zhao

Sleep is an important part of the body's recuperation and energy accumulation, and the quality of sleep also has a significant impact on people's physical and mental state during the epidemic of Coronavirus Disease. It has attracted increasing attention how to improve the quality of sleep and reduce the impact of sleep related diseases on health. The electroencephalogram (EEG) signals collected during sleep belong to spontaneous EEG signals. Spontaneous sleep EEG signals can reflect the body own changes, which is also an important basis for diagnosis and treatment of related diseases. Therefore, the establishment of an effective model for classifying sleep EEG signals is an important auxiliary tool for evaluating sleep.


Author(s):  
Wei Yan Peh ◽  
John Thomas ◽  
Elham Bagheri ◽  
Rima Chaudhari ◽  
Sagar Karia ◽  
...  

Pathological slowing in the electroencephalogram (EEG) is widely investigated for the diagnosis of neurological disorders. Currently, the gold standard for slowing detection is the visual inspection of the EEG by experts, which is time-consuming and subjective. To address those issues, we propose three automated approaches to detect slowing in EEG: Threshold-based Detection System (TDS), Shallow Learning-based Detection System (SLDS), and Deep Learning-based Detection System (DLDS). These systems are evaluated on channel-, segment-, and EEG-level. The three systems perform prediction via detecting slowing at individual channels, and those detections are arranged in histograms for detection of slowing at the segment- and EEG-level. We evaluate the systems through Leave-One-Subject-Out (LOSO) cross-validation (CV) and Leave-One-Institution-Out (LOIO) CV on four datasets from the US, Singapore, and India. The DLDS achieved the best overall results: LOIO CV mean balanced accuracy (BAC) of 71.9%, 75.5%, and 82.0% at channel-, segment- and EEG-level, and LOSO CV mean BAC of 73.6%, 77.2%, and 81.8% at channel-, segment-, and EEG-level. The channel- and segment-level performance is comparable to the intra-rater agreement (IRA) of an expert of 72.4% and 82%. The DLDS can process a 30 min EEG in 4 s and can be deployed to assist clinicians in interpreting EEGs.


Author(s):  
Sravanth Kumar Ramakuri ◽  
Chinmay Chakraboirty ◽  
Anudeep Peddi ◽  
Bharat Gupta

In recent years, a vast research is concentrated towards the development of electroencephalography (EEG)-based human-computer interface in order to enhance the quality of life for medical as well as nonmedical applications. The EEG is an important measurement of brain activity and has great potential in helping in the diagnosis and treatment of mental and brain neuro-degenerative diseases and abnormalities. In this chapter, the authors discuss the classification of EEG signals as a key issue in biomedical research for identification and evaluation of the brain activity. Identification of various types of EEG signals is a complicated problem, requiring the analysis of large sets of EEG data. Representative features from a large dataset play an important role in classifying EEG signals in the field of biomedical signal processing. So, to reduce the above problem, this research uses three methods to classify through feature extraction and classification schemes.


Author(s):  
Sateesh Reddy Avutu ◽  
Dinesh Bhatia

Patients with neurological disorders are increasing globally due to various factors such as change in lifestyle patterns, professional and personal stress, small nuclear families, etc. Neurological rehabilitation is an area focused by the several research and development organizations and scientists from different disciplines to invent new and advanced rehabilitation devices. This chapter starts with the classification of different neurological disorders and their potential causes. The rehabilitation devices available globally for neurological patients with their underlying associated technologies are explained in the chapter. Towards the end of the chapter, the reader can acquire the fundamental knowledge about the different neurological disorders and the mal-functionality associated with the corresponding organs. The utilization of advanced technologies such as artificial intelligence, machine learning, and deep learning by researchers to fabricate neuro rehabilitation devices to improve patients' quality of life (QOL) are discussed in concluding section of the chapter.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2854 ◽  
Author(s):  
Kwon-Woo Ha ◽  
Jin-Woo Jeong

Various convolutional neural network (CNN)-based approaches have been recently proposed to improve the performance of motor imagery based-brain-computer interfaces (BCIs). However, the classification accuracy of CNNs is compromised when target data are distorted. Specifically for motor imagery electroencephalogram (EEG), the measured signals, even from the same person, are not consistent and can be significantly distorted. To overcome these limitations, we propose to apply a capsule network (CapsNet) for learning various properties of EEG signals, thereby achieving better and more robust performance than previous CNN methods. The proposed CapsNet-based framework classifies the two-class motor imagery, namely right-hand and left-hand movements. The motor imagery EEG signals are first transformed into 2D images using the short-time Fourier transform (STFT) algorithm and then used for training and testing the capsule network. The performance of the proposed framework was evaluated on the BCI competition IV 2b dataset. The proposed framework outperformed state-of-the-art CNN-based methods and various conventional machine learning approaches. The experimental results demonstrate the feasibility of the proposed approach for classification of motor imagery EEG signals.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Won-Du Chang ◽  
Chang-Hwan Im

Template matching is an approach for signal pattern recognition, often used for biomedical signals including electroencephalogram (EEG). Since EEG is often severely contaminated by various physiological or pathological artifacts, identification and rejection of these artifacts with improved template matching algorithms would enhance the overall quality of EEG signals. In this paper, we propose a novel approach to improve the accuracy of conventional template matching methods by adopting the dynamic positional warping (DPW) technique, developed recently for handwriting pattern analysis. To validate the feasibility and superiority of the proposed method, eye-blink artifacts in the EEG signals were detected, and the results were then compared to those from conventional methods. DPW was found to outperform the conventional methods in terms of artifact detection accuracy, demonstrating the power of DPW in identifying specific one-dimensional data patterns.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012044
Author(s):  
Lingzhi Chen ◽  
Wei Deng ◽  
Chunjin Ji

Abstract Pattern Recognition is the most important part of the brain computer interface (BCI) system. More and more profound learning methods were applied in BCI to increase the overall quality of pattern recognition accuracy, especially in the BCI based on Electroencephalogram (EEG) signal. Convolutional Neural Networks (CNN) holds great promises, which has been extensively employed for feature classification in BCI. This paper will review the application of the CNN method in BCI based on various EEG signals.


Author(s):  
Rajeev Sharma ◽  
Ram Bilas Pachori

The chapter presents a new approach of computer aided diagnosis of focal electroencephalogram (EEG) signals by applying bivariate empirical mode decomposition (BEMD). Firstly, the focal and non-focal EEG signals are decomposed using the BEMD, which results in intrinsic mode functions (IMFs) corresponding to each signal. Secondly, bivariate bandwidths namely, amplitude bandwidth, precession bandwidth, and deformation bandwidth are computed for each obtained IMF. Interquartile range (IQR) values of bivariate bandwidths of IMFs are employed as the features for classification. In order to perform classification least squares support vector machine (LS-SVM) is used. The results of the experiment suggest that the computed bivariate bandwidths are significantly useful to discriminate focal EEG signals. The resultant classification accuracy obtained using proposed methodology, applied on the Bern-Barcelona EEG database, is 84.01%. The obtained results are encouraging and the proposed methodology can be helpful for identification of epileptogenic focus.


Author(s):  
Subrota Mazumdar ◽  
Rohit Chaudhary ◽  
Suruchi Suruchi ◽  
Suman Mohanty ◽  
Divya Kumari ◽  
...  

In this chapter, a nearest neighbor (k-NN)-based method for efficient classification of motor imagery using EEG for brain-computer interfacing (BCI) applications has been proposed. Electroencephalogram (EEG) signals are obtained from multiple channels from brain. These EEG signals are taken as input features and given to the k-NN-based classifier to classify motor imagery. More specifically, the chapter gives an outline of the Berlin brain-computer interface that can be operated with minimal subject change. All the design and simulation works are carried out with MATLAB software. k-NN-based classifier is trained with data from continuous signals of EEG channels. After the network is trained, it is tested with various test cases. Performance of the network is checked in terms of percentage accuracy, which is found to be 99.25%. The result suggested that the proposed method is accurate for BCI applications.


Sign in / Sign up

Export Citation Format

Share Document