Biotechnology and Bioprocessing
Latest Publications


TOTAL DOCUMENTS

68
(FIVE YEARS 68)

H-INDEX

0
(FIVE YEARS 0)

Published By Auctores Publishing LLC

2766-2314

2022 ◽  
Vol 3 (1) ◽  
pp. 01-08
Author(s):  
Azab Elsayed Azab ◽  
Mohamed Omar Albasha ◽  
Manal Abuelkasem Elnaif

The present study aimed to investigate the ameliorative effects of fenugreek seeds and curcumin on hematotoxicity induced by nicotine in male albino rats. 30 male F-344/NHsd Fischer rats, weighing from 180 to 200g were used in the present study. The animals were divided into five groups (6 rats for each); Group I (control group), Group II (nicotine treated group), Group III (nicotine/fenugreek seeds co-administered), Group IV (nicotine/curcumin co-administered), and Group V (nicotine/curcumin& fenugreek seeds co-administered). At the end of the experimentation and 24 hours after the last dose, all animals were anaesthetized with ether and blood samples were collected by heart puncture. The samples were collected in clean dry tubes containing the anticoagulant substance EDTA and used for the hematological studies. The results showed that the animals treated with nicotine for 4 weeks showed a significant decrease in RBCs count, hemoglobin concentration, hematocrit value, MCH, MCHC, and platelets count, and increased MCV and WBCs count as compared to the control group. Co-administration of nicotine with fenugreek and/or curcumin caused improvement in all hematological parameters when compared with nicotine group. It can be concluded that nicotine had a strong effect on the hematological parameters. The ingestion of fenugreek and/or curcumin prevent the hematoxicity induced by nicotine. The current study suggests that fenugreek and curcumin may be useful in combating free radical-induced hematotoxicity induced by nicotine.


2022 ◽  
Vol 3 (1) ◽  
pp. 01-04
Author(s):  
Waill A. Elkhateeb ◽  
Ghoson M. Daba

Botryotrichum and Scopulariopsis are a fungal genera that belongs to Class: Sordariomycetes. This review is to demonstrate secondary metabolites from Botryotrichum and Scopulariopsis and some of their reported biological activities. Moreover, describing the unique chemical diversity of these fungal genera involved in medical, pharmaceutical, agricultural applications. Also highlight the harmful side of these fungi if present.


2022 ◽  
Vol 3 (1) ◽  
pp. 01-06
Author(s):  
Waill A. Elkhateeb ◽  
Ghoson M. Daba

Stachybotrys, Memnoniella, Doratomyces and Graphium all these genera belonging to Class: Sordariomycetes. This review is to demonstrate description, ecology, and secondary metabolites from Stachybotrys, Memnoniella, Doratomyces and Graphium and some of their reported biological activities. Besides, describing the importance and potentials of those fungi in order to encourage for further studies to each genus metabolites and purify already known metabolites.


2022 ◽  
Vol 3 (1) ◽  
pp. 01-05
Author(s):  
Bon L.I ◽  
Maksimovich N.Ye ◽  
Dremza I.K. ◽  
Lychkovskaya Maria A

Objectives: To conduct a comparative analysis of respiration of mitochondria of brain homogenates of rats with stepwise subtotal cerebral ischemia with different duration between ligations of both common carotid arteries. Methods: The experiments were performed on 24 male mongrel white rats weighing 260 ±20 g. Cerebral ischemia (CI) was simulated under intravenous thiopental anesthesia (40-50 mg/kg). The control group consisted of falsely operated rats of similar sex and weight. To study mitochondrial respiration, the brain was extracted in the cold (0-4°C), dried with filter paper, weighed and homogenized in an isolation medium containing 0.32 M sucrose, 10 mM Tris-HCl, 1 mM EDTA, pH 7.4 (in a ratio of 1:10), using Potter-Evelheim homogenizer with Teflon pestle according to the modified method. To prevent systematic measurement errors, brain samples from the compared control and experimental groups of animals were studied under the same conditions. Results: Stepwise SCI with an interval of 1 and 3 days between bandages of both OCA leads to damage to the neurons of the parietal cortex and hippocampus of rats, which manifests itself in a decrease in their size, deformation of the pericaryons, an increase in the number of shrunken neurons and shadow cells. The most pronounced changes were observed in the subgroup with an interval between dressings of 1 day. These changes were similar to the changes in SCI (p>0.05), except for the absence of cells with pericellular edema in the hippocampus and a smaller number of them in the parietal cortex. SCI with an interval between WASP dressings of 7 days, on the contrary, it is manifested by less pronounced histological changes, especially in the hippocampus. Conclusion: In cerebral ischemia, damage to the inner mitochondrial membrane occurs due to activation of free radical oxidation processes. Damage to the inner mitochondrial membrane, in turn, leads to an increase in its permeability and a decrease in the level of the proton gradient due to the transition of protons along the concentration gradient through the resulting nonspecific pores into the mitochondrial matrix. As a result, the efficiency of ATP synthesis decreases, and more substrates and oxygen are required to maintain the intermembrane potential under these conditions.


2022 ◽  
Vol 3 (1) ◽  
pp. 01-07
Author(s):  
Bon Elizaveta I. ◽  
Maksimovich Natalia E. ◽  
Karnyushko Olga A. ◽  
Zimatkin Sergey M ◽  
Lychkovskaya Maria A

Objective. Evaluation of changes in the content of ATP synthase in the parietal cortex and hippocampus of the brain of rats with ischemia of varying severity in a comparative aspect. Methods. The experiments were performed on 88 male outbred white rats weighing 260 ± 20 g. Brain ischemia was modeled under conditions of intravenous thiopental anesthesia (40-50 mg / kg). Total cerebral ischemia was modeled by decapitation of animals. The brain sampling was carried out 1 hour and 24 hours after decapitation - to study tissue respiration of mitochondria, as well as 1 hour later to determine the content of ATP synthase. Subtotal cerebral ischemia was modeled by simultaneous ligation of both common carotid arteries. The material was taken after 1 hour to determine the content of ATP synthase. Stepwise subtotal cerebral ischemia was performed by sequential ligation of both common carotid arteries with an interval of 7 days. The sampling was carried out 1 hour after ligation of the second common carotid artery in each of the subgroups. Partial cerebral ischemia was modeled by ligation of one common carotid artery on the right. The sampling was carried out 1 hour after the operation. Determination of the content of ATP synthase was carried out by immunohistochemical method using monoclonal antibodies. For this purpose, after decapitation, the brain was quickly removed from the rats, pieces of the cerebral cortex were fixed in zinc-ethanol-formaldehyde at + 4 ° C (overnight), then embeddedвinвparaffin. Results. In the group of stepwise subtotal cerebral ischemia, the smallest decrease in the content of ATP synthase was observed in the 1st subgroup with an interval between dressings of 7 days, while the greatest decrease in the content of the enzyme was noted in the 3rd subgroup with the minimum interval between the dressings of the common carotid artery (1 day). Modeling of more severe types of ischemic damage led to pronounced morphological changes in neurons in the parietal cortex and hippocampus of the rat brain - a decrease in their size, deformation of the perikarya, an increase in the degree of neuronal chromatophilia with their simultaneous wrinkling and subsequent death. These disorders were most pronounced in the 3rd subgroup of stepwise subtotal cerebral ischemia with the shortest interval between dressings, which was 1 day, and in the group of total cerebral ischemia. Conclusion. Thus, the most pronounced decrease in the content of ATP synthase was observed in the groups of total cerebral ischemia, subtotal cerebral ischemia and in the 3rd subgroup of stepwise subtotal cerebral ischemia, with a minimal time interval between the ligation of the common carotid artery. In stepwise subtotal cerebral ischemia with an interval between ligation of the common carotid artery of 7 days, the suppression of the ATP synthase content was not so significant.


2021 ◽  
Vol 2 (10) ◽  
pp. 01-02
Author(s):  
Nida Tabassum Khan

Bioemulsifier is a poly-anionic and amphiphilic compound which can balance out the hydrocarbon emulsion in water by making an extremely thin layer between the hydrocarbon beads and water. Most extreme focus is acquired when culture media containing 12 carbon-based unsaturated fats are utilized as the carbon source. Bioemulsifier with proficient emulsifying action and low-production cost, meets various prerequisites of emulsification in the most practical manner in numerous industrial sectors such as in food and dairy.


2021 ◽  
Vol 2 (10) ◽  
pp. 01-11
Author(s):  
Wenfa Ng

High cell density cultivation necessitates cell division and biomass formation, the mechanisms of which remain poorly understood, especially from the cellular energetics perspective. Specifically, the sensing of energy abundance and the channelling of nutritional energy into biomass formation and cell maintenance remains enigmatic at the sensory, effector and decision levels. Thus, optimization of cell growth remains an iterative trial and error process where the principal parameters are growth medium composition and incubation temperature. In this study, a new semidefined formulated medium was shown to be useful for high cell density cultivation of Escherichia coli DH5α (ATCC 53868). Comprising K2HPO4, 12.54; KH2PO4, 2.31; D-Glucose, 4.0; NH4Cl, 1.0; Yeast extract, 12.0; NaCl, 5.0; MgSO4, 0.24; the medium possessed a high capacity phosphate buffer able to moderate pH fluctuations during cell growth known to be detrimental to biomass formation. With glucose and NH4Cl providing the nutrients for initial growth, followed by a lag phase of 3 hours, a maximal optical density of 12.0 was obtained after 27 hours of cultivation at 37 oC and 230 rpm. Yeast extract provides a secondary source of carbon and nitrogen. Maximal optical density obtained in formulated medium was higher than the 10.1, 4.2, and 3.4 obtained in Tryptic Soy Broth, M9 with 1 g/L of yeast extract, and LB Lennox, respectively. Cultivation of E. coli DH5α in formulated medium with 6 g/L of glucose resulted in a longer lag phase of 8 hours and a longer time (68 hours) to attainment of maximal optical density, which marked the upper limit of glucose concentration beyond which biomass formation would be reduced. Specifically, glucose concentration above 6 g/L markedly reduced biomass formation possibly due to the environmental stress arising from low pH in the culture broth. Glucose concentration below 4 g/L, on the other hand, reduced biomass formation through a smaller pool of nutrients serving as biomass building blocks. Deviation from 1:1 molar ratio between glucose and NH4Cl was not detrimental to biomass formation and growth rates. Collectively, a semi-defined formulated medium could increase optical density of E. coli DH5α beyond that of LB Lennox and Tryptic Soy Broth, and may find use in cultivation of cells for applied microbiology research.


2021 ◽  
Vol 2 (9) ◽  
pp. 01-07
Author(s):  
Steve Yap

Globally, more than 30 million people suffer from diabetes mellitus type 1 (T1DM) characterized by pancreas producing little or no insulin hormone to facilitate glucose entering cells for energy production. T1DM patients tend to suffer a higher overall rate of atherosclerosis, cancer, and end-stage renal failure. No drug or surgical therapy seems to halt its annual upward trend amongst children and young adults. Consequently, a significant number of sufferers turn to complementary or alternative therapies for help to arrest this chronic endocrine condition. This paper discusses how a well-designed evidence-based dietary and nutritional therapy with some lifestyle modifications might offer a solution for this highly complex autoimmune disorder. The treatment outcome demonstrated a partial regeneration of pancreatic islet beta cells with substantial improvement for all relevant serum and urine markers tested.


2021 ◽  
Vol 2 (9) ◽  
pp. 01-11
Author(s):  
Wenfa Ng

Interests remain in searching for cofactor regeneration system with higher efficiency at lower substrate cost. Glucose dehydrogenase (GDH) system has been dominant in NADH regeneration, but it only has a theoretical yield of one NADH per glucose molecule. This work sought to explore the utility of a two-step ethanol utilization pathway (EUP) in pathway-based NADH regeneration. The pathway runs from ethanol to acetaldehyde and to acetyl-CoA with each step generating one NADH, that together results in a higher theoretical yield of two NADH per ethanol molecule. In this project, anaerobic biotransformation of ketone (acetophenone or butanone) to alcohol by cpsADH from Candida parapsilosis was used as readout for evaluating relative efficacy and operating modes for EUP cofactor regeneration in Escherichia coli BL21 (DE3). Experiment tests validated that EUP was more efficient than GDH in NADH regeneration. Further, growing cell delivered higher biotransformation efficiency compared to resting cell due to the driving force generated by cell growth. Finally, preculture or cultivation in M9 + 10 g/L ethanol medium delivered higher biotransformation efficiency compared to LB medium. Overall, EUP could help regenerate NADH in support of a biocatalytic reaction, and is more efficient in cofactor regeneration than GDH.


2021 ◽  
Vol 2 (9) ◽  
pp. 01-07
Author(s):  
Wenfa Ng

Successful engineering of a microbial host for efficient production of a target product from a given substrate can be viewed as an extensive optimization task. Such a task involves the selection of high activity enzymes as well as their gene expression regulatory control elements (i.e., promoters and ribosome binding sites). Finally, there is also the need to tune expression of multiple genes along a heterologous pathway to relieve constraints from rate-limiting step and help reduce metabolic burden on cells from unnecessary over-expression of high activity enzymes. While the aforementioned tasks could be performed through combinatorial experiments, such an approach incurs significant cost, time and effort, which is a handicap that can be relieved by application of modern machine learning tools. Such tools could attempt to predict high activity enzymes from sequence, but they are currently most usefully applied in classifying strong promoters from weaker ones as well as combinatorial tuning of expression of multiple genes. This perspective reviews the application of machine learning tools to aid metabolic pathway optimization through identifying challenges in metabolic engineering that could be overcome with the help of machine learning tools.


Sign in / Sign up

Export Citation Format

Share Document