scholarly journals The Role of Liquid Biopsy in Early Diagnosis of Lung Cancer

2021 ◽  
Vol 11 ◽  
Author(s):  
Cláudia Freitas ◽  
Catarina Sousa ◽  
Francisco Machado ◽  
Mariana Serino ◽  
Vanessa Santos ◽  
...  

Liquid biopsy is an emerging technology with a potential role in the screening and early detection of lung cancer. Several liquid biopsy-derived biomarkers have been identified and are currently under ongoing investigation. In this article, we review the available data on the use of circulating biomarkers for the early detection of lung cancer, focusing on the circulating tumor cells, circulating cell-free DNA, circulating micro-RNAs, tumor-derived exosomes, and tumor-educated platelets, providing an overview of future potential applicability in the clinical practice. While several biomarkers have shown exciting results, diagnostic performance and clinical applicability is still limited. The combination of different biomarkers, as well as their combination with other diagnostic tools show great promise, although further research is still required to define and validate the role of liquid biopsies in clinical practice.

2020 ◽  
Vol 9 (11) ◽  
pp. 3674
Author(s):  
D. Akhoundova ◽  
J. Mosquera Martinez ◽  
L. E. Musmann ◽  
C. Britschgi ◽  
C. Rütsche ◽  
...  

Liquid biopsy is a rapidly emerging tool of precision oncology enabling minimally invasive molecular diagnostics and longitudinal monitoring of treatment response. For the clinical management of advanced stage lung cancer patients, detection and quantification of circulating tumor DNA (ctDNA) is now widely adopted into clinical practice. Still, interpretation of results and validation of ctDNA-based treatment decisions remain challenging. We report here our experience implementing liquid biopsies into the clinical management of lung cancer. We discuss advantages and limitations of distinct ctDNA assay techniques and highlight our approach to the analysis of recurrent molecular alterations found in lung cancer. Moreover, we report three exemplary clinical cases illustrating the complexity of interpreting liquid biopsy results in clinical practice. These cases underscore the potential and current limitations of liquid biopsy, focusing on the difficulty of interpreting discordant findings. In our view, despite all current limitations, the analysis of ctDNA in lung cancer patients is an essential and highly versatile complementary diagnostic tool for the clinical management of lung cancer patients in the era of precision oncology.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3923
Author(s):  
Daniel Di Capua ◽  
Dara Bracken-Clarke ◽  
Karine Ronan ◽  
Anne-Marie Baird ◽  
Stephen Finn

Lung cancer is a leading cause of cancer-related deaths, contributing to 18.4% of cancer deaths globally. Treatment of non-small cell lung carcinoma has seen rapid progression with targeted therapies tailored to specific genetic drivers. However, identifying genetic alterations can be difficult due to lack of tissue, inaccessible tumors and the risk of complications for the patient with serial tissue sampling. The liquid biopsy provides a minimally invasive method which can obtain circulating biomarkers shed from the tumor and could be a safer alternative to tissue biopsy. While tissue biopsy remains the gold standard, liquid biopsies could be very beneficial where serial sampling is required, such as monitoring disease progression or development of resistance mutations to current targeted therapies. Liquid biopsies also have a potential role in identifying patients at risk of relapse post treatment and as a component of future lung cancer screening protocols. Rapid developments have led to multiple platforms for isolating circulating tumor cells (CTCs) and detecting circulating tumor DNA (ctDNA); however, standardization is lacking, especially in lung carcinoma. Additionally, clonal hematopoiesis of uncertain clinical significance must be taken into consideration in genetic sequencing, as it introduces the potential for false positives. Various biomarkers have been investigated in liquid biopsies; however, in this review, we will concentrate on the current use of ctDNA and CTCs, focusing on the clinical relevance, current and possible future applications and limitations of each.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2101
Author(s):  
Ângela Carvalho ◽  
Gabriela Ferreira ◽  
Duarte Seixas ◽  
Catarina Guimarães-Teixeira ◽  
Rui Henrique ◽  
...  

Despite the intensive efforts dedicated to cancer diagnosis and treatment, lung cancer (LCa) remains the leading cause of cancer-related mortality, worldwide. The poor survival rate among lung cancer patients commonly results from diagnosis at late-stage, limitations in characterizing tumor heterogeneity and the lack of non-invasive tools for detection of residual disease and early recurrence. Henceforth, research on liquid biopsies has been increasingly devoted to overcoming these major limitations and improving management of LCa patients. Liquid biopsy is an emerging field that has evolved significantly in recent years due its minimally invasive nature and potential to assess various disease biomarkers. Several strategies for characterization of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have been developed. With the aim of standardizing diagnostic and follow-up practices, microfluidic devices have been introduced to improve biomarkers isolation efficiency and specificity. Nonetheless, implementation of lab-on-a-chip platforms in clinical practice may face some challenges, considering its recent application to liquid biopsies. In this review, recent advances and strategies for the use of liquid biopsies in LCa management are discussed, focusing on high-throughput microfluidic devices applied for CTCs and ctDNA isolation and detection, current clinical validation studies and potential clinical utility.


2016 ◽  
Vol 11 (4) ◽  
pp. S68
Author(s):  
T. Powrózek ◽  
P. Krawczyk ◽  
D. Kowalski ◽  
B. Kuźnar-Kamińska ◽  
K. Winiarczyk ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 824
Author(s):  
Felix I. L. Clanchy

Sarcomas are mesenchymal tumours that often arise and develop as a result of chromosomal translocations, and for several forms of sarcoma the EWSR1 gene is a frequent translocation partner. Sarcomas are a rare form of malignancy, which arguably have a proportionally greater societal burden that their prevalence would suggest, as they are more common in young people, with survivors prone to lifelong disability. For most forms of sarcoma, histological diagnosis is confirmed by molecular techniques such as FISH or RT-PCR. Surveillance after surgical excision, or ablation by radiation or chemotherapy, has remained relatively unchanged for decades, but recent developments in molecular biology have accelerated the progress towards routine analysis of liquid biopsies of peripheral blood. The potential to detect evidence of residual disease or metastasis in the blood has been demonstrated by several groups but remains unrealized as a routine diagnostic for relapse during remission, for disease monitoring during treatment, and for the detection of occult, residual disease at the end of therapy. An update is provided on research relevant to the improvement of the early detection of relapse in sarcomas with EWSR1-associated translocations, in the contexts of biology, diagnosis, and liquid biopsy.


2021 ◽  
Vol 10 (4) ◽  
pp. 75
Author(s):  
A.A. Izmailov ◽  
A.F. Nasretdinov ◽  
A.V. Sultanbaev ◽  
D.D. Sakaeva ◽  
K.V. Menshikov ◽  
...  

2018 ◽  
Vol 13 (10) ◽  
pp. S785-S786 ◽  
Author(s):  
P. Reis ◽  
M. Pintilie ◽  
I. Jurisica ◽  
G. Liu ◽  
M. Tsao

Author(s):  
Annarita Perillo ◽  
Mohamed Vincenzo Agbaje Olufemi ◽  
Jacopo De Robbio ◽  
Rossella Margherita Mancuso ◽  
Anna Roscigno ◽  
...  

Lung cancer is the most common cancer and the leading cause of cancer mortality worldwide. To date, tissue biopsy has been the gold standard for the diagnosis and the identification of specific molecular mutations, to guide choice of therapy. However, this procedure has several limitations. Liquid biopsy could represent a solution to the intrinsic limits of traditional biopsy. It can detect cancer markers such as circulating tumor DNA or RNA (ctDNA, ctRNA), and circulating tumor cells, in plasma, serum or other biological fluids. This procedure is minimally invasive, reproducible and can be used repeatedly. The main clinical applications of liquid biopsy in non-small cell lung cancer (NSCLC) patients are the early diagnosis, stratification of the risk of relapse, identification of mutations to guide application of targeted therapy and the evaluation of the minimum residual disease. In this review, the current role of liquid biopsy and associated markers in the management of NSCLC patients was analyzed, with emphasis on ctDNA and CTCs, and radiotherapy.


Author(s):  
David Crosby

AbstractLiquid biopsy approaches are relatively well developed for cancer therapy monitoring and disease relapse, but they also have incredible potential in the cancer early detection and screening field. There are, however, several challenges to overcome before this potential can be met. Research in this area needs to be cohesive and, as a driver of research, Cancer Research UK is in an ideal position to enable this.


Sign in / Sign up

Export Citation Format

Share Document