scholarly journals Exploring the Roles of HERC2 and the NEDD4L HECT E3 Ubiquitin Ligase Subfamily in p53 Signaling and the DNA Damage Response

2021 ◽  
Vol 11 ◽  
Author(s):  
Nicholas A. Mathieu ◽  
Rafael H. Levin ◽  
Donald E. Spratt

Cellular homeostasis is governed by the precise expression of genes that control the translation, localization, and termination of proteins. Oftentimes, environmental and biological factors can introduce mutations into the genetic framework of cells during their growth and division, and these genetic abnormalities can result in malignant transformations caused by protein malfunction. For example, p53 is a prominent tumor suppressor protein that is capable of undergoing more than 300 posttranslational modifications (PTMs) and is involved with controlling apoptotic signaling, transcription, and the DNA damage response (DDR). In this review, we focus on the molecular mechanisms and interactions that occur between p53, the HECT E3 ubiquitin ligases WWP1, SMURF1, HECW1 and HERC2, and other oncogenic proteins in the cell to explore how irregular HECT-p53 interactions can induce tumorigenesis.

Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 62 ◽  
Author(s):  
Nikolaos Antoniou ◽  
Nefeli Lagopati ◽  
Dimitrios Ilias Balourdas ◽  
Michail Nikolaou ◽  
Alexandros Papalampros ◽  
...  

The genome is exposed daily to many deleterious factors. Ubiquitination is a mechanism that regulates several crucial cellular functions, allowing cells to react upon various stimuli in order to preserve their homeostasis. Ubiquitin ligases act as specific regulators and actively participate among others in the DNA damage response (DDR) network. UBE4B is a newly identified member of E3 ubiquitin ligases that appears to be overexpressed in several human neoplasms. The aim of this review is to provide insights into the role of UBE4B ubiquitin ligase in DDR and its association with p53 expression, shedding light particularly on the molecular mechanisms of carcinogenesis.


2008 ◽  
Vol 29 (3) ◽  
pp. 849-860 ◽  
Author(s):  
Jiaxue Wu ◽  
Michael S. Y. Huen ◽  
Lin-Yu Lu ◽  
Lin Ye ◽  
Yali Dou ◽  
...  

ABSTRACT Histone ubiquitination participates in multiple cellular processes, including the DNA damage response. However, the molecular mechanisms involved are not clear. Here, we have identified that RAP80/UIMC1 (ubiquitin interaction motif containing 1), a functional partner of BRCA1, recognizes ubiquitinated histones H2A and H2B. The interaction between RAP80 and ubiquitinated histones H2A and H2B is increased following DNA damage. Since RAP80 facilitates BRCA1's translocation to DNA damage sites, our results indicate that ubiquitinated histones H2A and H2B could be upstream partners of the BRCA1/RAP80 complex in the DNA damage response. Moreover, we have found that RNF8 (ring finger protein 8), an E3 ubiquitin ligase, regulates ubiquitination of both histones H2A and H2B. In RNF8-deficient mouse embryo fibroblasts, ubiquitination of both histones H2A and H2B is dramatically reduced, which abolishes the DNA damage-induced BRCA1 and RAP80 accumulation at damage lesions on the chromatin. Taken together, our results suggest that ubiquitinated histones H2A and H2B may recruit the BRCA1 complex to DNA damage lesions on the chromatin.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kamila Maliszewska-Olejniczak ◽  
Damian Kaniowski ◽  
Martyna Araszkiewicz ◽  
Katarzyna Tymińska ◽  
Agnieszka Korgul

The impact of a mixed neutron-gamma beam on the activation of DNA damage response (DDR) proteins and non-coding RNAs (ncRNAs) is poorly understood. Ionizing radiation is characterized by its biological effectiveness and is related to linear energy transfer (LET). Neutron-gamma mixed beam used in boron neutron capture therapy (BNCT) can induce another type of DNA damage such as clustered DNA or multiple damaged sites, as indicated for high LET particles, such as alpha particles, carbon ions, and protons. We speculate that after exposure to a mixed radiation field, the repair capacity might reduce, leading to unrepaired complex DNA damage for a long period and may promote genome instability and cell death. This review will focus on the poorly studied impact of neutron-gamma mixed beams with an emphasis on DNA damage and molecular mechanisms of repair. In case of BNCT, it is not clear which repair pathway is involved, and recent experimental work will be presented. Further understanding of BNCT-induced DDR mechanisms may lead to improved therapeutic efficiency against different tumors.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 938 ◽  
Author(s):  
Risso-Ballester ◽  
Sanjuán

Most DNA viruses exhibit relatively low rates of spontaneous mutation. However, the molecular mechanisms underlying DNA virus genetic stability remain unclear. In principle, mutation rates should not depend solely on polymerase fidelity, but also on factors such as DNA damage and repair efficiency. Most eukaryotic DNA viruses interact with the cellular DNA damage response (DDR), but the role of DDR pathways in preventing mutations in the virus has not been tested empirically. To address this goal, we serially transferred human adenovirus type 5 in cells in which the telangiectasia-mutated PI3K-related protein kinase (ATM), the ATM/Rad3-related (ATR) kinase, and the DNA-dependent protein kinase (DNA-PK) were chemically inactivated, as well as in control cells displaying normal DDR pathway functioning. High-fidelity deep sequencing of these viral populations revealed mutation frequencies in the order of one-millionth, with no detectable effect of the inactivation of DDR mediators ATM, ATR, and DNA-PK on adenovirus sequence variability. This suggests that these DDR pathways do not play a major role in determining adenovirus genetic diversity.


2016 ◽  
Vol 94 (5) ◽  
pp. 381-395 ◽  
Author(s):  
Poonam Agarwal ◽  
Kyle M. Miller

DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1028-1028
Author(s):  
Giorgia Simonetti ◽  
Antonella Padella ◽  
Anna Ferrari ◽  
Viviana Guadagnuolo ◽  
Elisa Zago ◽  
...  

Abstract Acute Myeloid Leukemia (AML) is a heterogeneous malignancy characterized by the expansion of myeloid precursor cells with limited or abnormal differentiation capacity. A relatively common event in AML is represented by chromosome gain or loss. Numerical chromosome abnormalities, which define aneuploidy, have a detrimental effect in primary non-malignant cells, since they dramatically reduce cellular fitness. However, evidence suggests that they have a causative role in tumorigenesis and are well tolerated in transformed cells belonging to the myeloid lineage. Aim of the study is to elucidate the pathogenic mechanisms causing and sustaining aneuploidy in AML in order to find novel potential therapeutic targets. A panel of genetic alterations was analyzed on 886 AML cases at Seràgnoli Institute in Bologna between 2002 and 2013. Among them, 31 samples were subjected to whole exome sequencing (WES, Illumina Hiseq2000). Raw data were processed with WES Pipeline web tool for variants detection. Gene expression profiling (GEP, Affymetrix) was performed on bone marrow cells from 49 AML patients at diagnosis with more than 80% blast cells, including 22 aneuploid cases (carrying monosomy, trisomy or a monosomal karyotype) and 27 cases with normal karyotype. The aneuploid status was confirmed by single nucleotide polymorphism (SNP) array. WES analysis of 13 aneuploid and 12 euploid AML cases revealed a significantly higher median value of genetic variants and mutated genes in aneuploid compared with euploid samples (aneuploid vs. euploid: median of variants, 30 vs. 20 (p=0.02) including nonsynonimous single nucleotide variants, frameshift insertions and deletions, stopgains; median of mutated genes, 25 vs. 17 (p=0.05); details will be presented at the meeting). Noticeably, by gene ontology analysis of mutated genes in the aneuploid cohort we observed a strong enrichment in genes regulating cell cycle, including chromosome organization (p=5.4x10-4) and mitotic sister chromatid cohesion (p=6.98x10-4), and chromatin modification (p=1.3x10-4), with most of the variants being not annotated in the COSMIC database. Euploid samples were enriched for mutations affecting genes involved in cytoskeleton (p=1.6x10-3) and metabolic activities (p=1.9x10-3). A number of genes mutated in the aneuploid cases belong to the APCCdc20 complex and localize on chromosomes generally spared by aneuploidy, supporting the key role of the identified aberrations in the molecular mechanisms leading to numerical chromosome abnormalities. Among several mutations predicted as “drivers” by DOTS-Finder tool (CCDC144NL, DNMT3A, GXYLT1, MESP1, TPRX1,TPTE, ZNF717), we defined some candidates involved in cell cycle regulation and DNA replication. Functional analysis are ongoing. Furthermore, a tumor suppressor function was associated with mutated genes involved in the DNA repair process. In our WES analysis, we identified a subgroup of genes linked to DNA damage response, including TP53, which are preferentially mutated in the aneuploid cohort. Since P53 is a limiting-factor in aneuploidy-induced tumorigenesis, we analyzed the mutational status in a larger cohort of AML patients by Next Generation sequencing (NGS) and Sanger sequencing. Interestingly, we identified TP53 mutations in 15/58 aneuploid vs. 1/36 euploid cases (p=3.8x10-3). Finally, differential expression of genes involved in DNA damage and integrity checkpoints was identified by GEP of aneuploid and euploid AML samples. Previous evidence showed that loss of the spindle checkpoint gene BUB1B induces aneuploidy and predisposes to tumorigenesis. Our data, obtained by integrated NGS and GEP approaches, support a causal link between mutations in a panel of genes involved in cell cycle control/chromosome organization and aneuploidy in AML. Genetic and transcriptional alterations of genes regulating DNA damage response were detected in our AML cohort, suggesting novel molecular mechanisms for the acquisition and/or maintenance of the aneuploid condition and consequently, of leukemogenesis. The results indicate that the identified genomic aberrations likely drive chromosome gain and/or loss in AML by cooperating with alterations affecting different pathways, in order to overcome the unfitness barrier induced by aneuploidy. Supported by: FP7 NGS-PTL project, ELN, AIL, AIRC, PRIN, progetto Regione-Università 2010-12 (L. Bolondi). Disclosures Martinelli: Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau; Pfizer: Consultancy; ARIAD: Consultancy.


2013 ◽  
Vol 57 (7) ◽  
pp. 1255-1269 ◽  
Author(s):  
Julia Bornhorst ◽  
Sören Meyer ◽  
Till Weber ◽  
Carolina Böker ◽  
Talke Marschall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document