mechanisms of carcinogenesis
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 32)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Miaomiao Huo ◽  
Jingyao Zhang ◽  
Wei Huang ◽  
Yan Wang

Epigenetic modifications and metabolism are two fundamental biological processes. During tumorigenesis and cancer development both epigenetic and metabolic alterations occur and are often intertwined together. Epigenetic modifications contribute to metabolic reprogramming by modifying the transcriptional regulation of metabolic enzymes, which is crucial for glucose metabolism, lipid metabolism, and amino acid metabolism. Metabolites provide substrates for epigenetic modifications, including histone modification (methylation, acetylation, and phosphorylation), DNA and RNA methylation and non-coding RNAs. Simultaneously, some metabolites can also serve as substrates for nonhistone post-translational modifications that have an impact on the development of tumors. And metabolic enzymes also regulate epigenetic modifications independent of their metabolites. In addition, metabolites produced by gut microbiota influence host metabolism. Understanding the crosstalk among metabolism, epigenetic modifications, and gene expression in cancer may help researchers explore the mechanisms of carcinogenesis and progression to metastasis, thereby provide strategies for the prevention and therapy of cancer. In this review, we summarize the progress in the understanding of the interactions between cancer metabolism and epigenetics.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3446
Author(s):  
Alexander E. Kabakov ◽  
Vladimir L. Gabai

The high frequency of breast cancer worldwide and the high mortality among women with this malignancy are a serious challenge for modern medicine. A deeper understanding of the mechanisms of carcinogenesis and emergence of metastatic, therapy-resistant breast cancers would help development of novel approaches to better treatment of this disease. The review is dedicated to the role of members of the heat shock protein 70 subfamily (HSP70s or HSPA), mainly inducible HSP70, glucose-regulated protein 78 (GRP78 or HSPA5) and GRP75 (HSPA9 or mortalin), in the development and pathogenesis of breast cancer. Various HSP70-mediated cellular mechanisms and pathways which contribute to the oncogenic transformation of mammary gland epithelium are reviewed, as well as their role in the development of human breast carcinomas with invasive, metastatic traits along with the resistance to host immunity and conventional therapeutics. Additionally, intracellular and cell surface HSP70s are considered as potential targets for therapy or sensitization of breast cancer. We also discuss a clinical implication of Hsp70s and approaches to targeting breast cancer with gene vectors or nanoparticles downregulating HSP70s, natural or synthetic (small molecule) inhibitors of HSP70s, HSP70-binding antibodies, HSP70-derived peptides, and HSP70-based vaccines.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1481
Author(s):  
Yashwanth Subbannayya ◽  
Riccardo Di Fiore ◽  
Silvana Anna Maria Urru ◽  
Jean Calleja-Agius

Rare ovarian cancers are ovarian cancers with an annual incidence of less than 6 cases per 100,000 women. They generally have a poor prognosis due to being delayed diagnosis and treatment. Exploration of molecular mechanisms in these cancers has been challenging due to their rarity and research efforts being fragmented across the world. Omics approaches can provide detailed molecular snapshots of the underlying mechanisms of these cancers. Omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, can identify potential candidate biomarkers for diagnosis, prognosis, and screening of rare gynecological cancers and can aid in identifying therapeutic targets. The integration of multiple omics techniques using approaches such as proteogenomics can provide a detailed understanding of the molecular mechanisms of carcinogenesis and cancer progression. Further, omics approaches can provide clues towards developing immunotherapies, cancer recurrence, and drug resistance in tumors; and form a platform for personalized medicine. The current review focuses on the application of omics approaches and integrative biology to gain a better understanding of rare ovarian cancers.


2021 ◽  
Author(s):  
Julio Avelar-Barragan ◽  
Lauren DeDecker ◽  
Zachary Lu ◽  
Bretton Coppedge ◽  
William Karnes ◽  
...  

Background: Colorectal cancer is the second most deadly and third most common cancer in the world. Its development is heterogenous, with multiple mechanisms of carcinogenesis. Two distinct mechanisms include the adenoma-carcinoma sequence and the serrated pathway. The gut microbiome has been identified as a key player in the adenoma-carcinoma sequence, but its role in serrated carcinogenesis is unclear. In this study, we characterized the gut microbiome of 140 polyp-free and polyp-bearing individuals using colon mucosa and fecal samples to determine if microbiome composition was associated with each of the two key pathways. Results: We discovered significant differences between colon mucosa and fecal samples, explaining 14% of the variation observed in the microbiome. Multiple mucosal samples were collected from each individual to investigate the gut microbiome for differences between polyp and healthy intestinal tissue, but no such differences were found. Colon mucosa sampling revealed that the microbiomes of individuals with tubular adenomas and serrated polyps were significantly different from each other and polyp-free individuals, explaining 2-10% of the variance in the microbiome. Further analysis revealed differential abundances of Eggerthella lenta, Clostridium scindens, and three microbial genes across tubular adenoma, serrated polyp, and polyp-free cases. Conclusion: By directly sampling the colon mucosa and distinguishing between the different developmental pathways of colorectal cancer, this study helps characterize potential mechanistic targets and diagnostic biomarkers for serrated carcinogenesis. This research also provides insight into multiple microbiome sampling strategies by assessing each methods practicality and effect on microbial community composition.


2021 ◽  
Vol 11 ◽  
Author(s):  
Pin Zhao ◽  
Samiullah Malik ◽  
Shaojun Xing

Hepatocellular carcinoma (HCC), is the third leading cause of cancer-related deaths, which is largely caused by virus infection. About 80% of the virus-infected people develop a chronic infection that eventually leads to liver cirrhosis and hepatocellular carcinoma (HCC). With approximately 71 million HCV chronic infected patients worldwide, they still have a high risk of HCC in the near future. However, the mechanisms of carcinogenesis in chronic HCV infection have not been still fully understood, which involve a complex epigenetic regulation and cellular signaling pathways. Here, we summarize 18 specific gene targets and different signaling pathways involved in recent findings. With these epigenetic alterations requiring histone modifications and DNA hyper or hypo-methylation of these specific genes, the dysregulation of gene expression is also associated with different signaling pathways for the HCV life cycle and HCC. These findings provide a novel insight into a correlation between HCV infection and HCC tumorigenesis, as well as potentially preventable approaches. Hepatitis C virus (HCV) infection largely causes hepatocellular carcinoma (HCC) worldwide with 3 to 4 million newly infected cases diagnosed each year. It is urgent to explore its underlying molecular mechanisms for therapeutic treatment and biomarker discovery. However, the mechanisms of carcinogenesis in chronic HCV infection have not been still fully understood, which involve a complex epigenetic regulation and cellular signaling pathways. Here, we summarize 18 specific gene targets and different signaling pathways involved in recent findings. With these epigenetic alterations requiring histone modifications and DNA hyper or hypo-methylation of these specific genes, the dysregulation of gene expression is also associated with different signaling pathways for the HCV life cycle and HCC. These findings provide a novel insight into a correlation between HCV infection and HCC tumorigenesis, as well as potentially preventable approaches.


2021 ◽  
Vol 11 ◽  
Author(s):  
Gurcan Gunaydin

Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) are among the most important and abundant players of the tumor microenvironment. CAFs as well as TAMs are known to play pivotal supportive roles in tumor growth and progression. The number of CAF or TAM cells is mostly correlated with poor prognosis. Both CAFs and TAMs are in a reciprocal communication with the tumor cells in the tumor milieu. In addition to such interactions, CAFs and TAMs are also involved in a dynamic and reciprocal interrelationship with each other. Both CAFs and TAMs are capable of altering each other’s functions. Here, the current understanding of the distinct mechanisms about the complex interplay between CAFs and TAMs are summarized. In addition, the consequences of such a mutual relationship especially for tumor progression and tumor immune evasion are highlighted, focusing on the synergistic pleiotropic effects. CAFs and TAMs are crucial components of the tumor microenvironment; thus, they may prove to be potential therapeutic targets. A better understanding of the tri-directional interactions of CAFs, TAMs and cancer cells in terms of tumor progression will pave the way for the identification of novel theranostic cues in order to better target the crucial mechanisms of carcinogenesis.


2021 ◽  
Vol 9 (B) ◽  
pp. 509-514
Author(s):  
Sabina Zhumakayeva ◽  
Larissa Muravlyova ◽  
Valentina Sirota ◽  
Vilen Molotov-Luchansky ◽  
Ryszhan Bakirova ◽  
...  

BACKGROUND: Every year 1.5 million women in the world are diagnosed with breast cancer (BC). In 2018, more than 260,000 new cases of cancer and more than 40,000 deaths due to this disease were detected. At the same time, in Kazakhstan, an intensive indicator of the incidences of BC in 2018 amounted to 25.3% per population of 100 thousand people (2017–24.5%) with a growth rate of 3.1%, which in absolute numbers are 4,648 new cases per year. In terms of mortality, BC ranks third after lung and stomach cancer (6.8%). AIM: This necessitates a detailed study of the molecular mechanisms that underlie the development and progression of BC. One of the mechanisms of carcinogenesis is oxidative stress (OS). An increase in malondialdehyde (MDA) levels was detected in the early stages of cancer. It was suggested that MDA, due to its high cytotoxicity, acts as a promoter of the tumor and cocarcinogen agent. METHODS: Therefore, violation of the parameters of OS in BC is in no doubt. However, according to the literature data analysis, these results are ambiguous and contradictory. There are no studies on a comprehensive assessment of the oxidative destruction of lipids, proteins, and nucleic acids in BC. CONCLUSION: The nature and direction of changes in various components of OS in patients with BC have not been adequately studied, which is necessary for a correct assessment of the involvement of OS in the mechanism of the pathological process and determination of a sensitive marker of the risk of BC or its progression.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-321534
Author(s):  
Jeroen R Huyghe ◽  
Tabitha A Harrison ◽  
Stephanie A Bien ◽  
Heather Hampel ◽  
Jane C Figueiredo ◽  
...  

ObjectiveAn understanding of the etiologic heterogeneity of colorectal cancer (CRC) is critical for improving precision prevention, including individualized screening recommendations and the discovery of novel drug targets and repurposable drug candidates for chemoprevention. Known differences in molecular characteristics and environmental risk factors among tumors arising in different locations of the colorectum suggest partly distinct mechanisms of carcinogenesis. The extent to which the contribution of inherited genetic risk factors for CRC differs by anatomical subsite of the primary tumor has not been examined.DesignTo identify new anatomical subsite-specific risk loci, we performed genome-wide association study (GWAS) meta-analyses including data of 48 214 CRC cases and 64 159 controls of European ancestry. We characterised effect heterogeneity at CRC risk loci using multinomial modelling.ResultsWe identified 13 loci that reached genome-wide significance (p<5×10−8) and that were not reported by previous GWASs for overall CRC risk. Multiple lines of evidence support candidate genes at several of these loci. We detected substantial heterogeneity between anatomical subsites. Just over half (61) of 109 known and new risk variants showed no evidence for heterogeneity. In contrast, 22 variants showed association with distal CRC (including rectal cancer), but no evidence for association or an attenuated association with proximal CRC. For two loci, there was strong evidence for effects confined to proximal colon cancer.ConclusionGenetic architectures of proximal and distal CRC are partly distinct. Studies of risk factors and mechanisms of carcinogenesis, and precision prevention strategies should take into consideration the anatomical subsite of the tumour.


Sign in / Sign up

Export Citation Format

Share Document