scholarly journals The Role of Akt in Acquired Cetuximab Resistant Head and Neck Squamous Cell Carcinoma: An In Vitro Study on a Novel Combination Strategy

2021 ◽  
Vol 11 ◽  
Author(s):  
Hannah Zaryouh ◽  
Ines De Pauw ◽  
Hasan Baysal ◽  
Patrick Pauwels ◽  
Marc Peeters ◽  
...  

The epidermal growth factor receptor (EGFR) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). Resistance to EGFR-targeted therapies, such as cetuximab, poses a challenging problem. This study aims to characterize acquired cetuximab resistance mechanisms in HNSCC cell lines by protein phosphorylation profiling. Through this, promising combination treatments can be identified to possibly overcome acquired cetuximab resistance in HNSCC. Protein phosphorylation profiling showed increased phosphorylation of Akt1/2/3 after cetuximab treatment in acquired cetuximab resistant cells compared to cetuximab sensitive cells, which was confirmed by western blotting. Based on this protein phosphorylation profile, a novel combination treatment with cetuximab and the Akt1/2/3 inhibitor MK2206 was designed. Synergy between cetuximab and MK2206 was observed in two cetuximab sensitive HNSCC cell lines and one acquired cetuximab resistant variant in simultaneous treatment schedules. In conclusion, this study demonstrates that increased Akt1/2/3 phosphorylation seems to be characteristic for acquired cetuximab resistance in HNSCC cell lines. Our results also show an additive to synergistic interaction between cetuximab and MK2206 in simultaneous treatment schedules. These data support the hypothesis that the combination of cetuximab with PI3K/Akt pathway inhibition might be a promising novel therapeutic strategy to overcome acquired cetuximab resistance in HNSCC patients.

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3038
Author(s):  
Mickaël Burgy ◽  
Aude Jehl ◽  
Ombline Conrad ◽  
Sophie Foppolo ◽  
Véronique Bruban ◽  
...  

The EGFR-targeting antibody cetuximab (CTX) combined with radiotherapy is the only targeted therapy that has been proven effective for the treatment of locally advanced head and neck squamous cell carcinoma (LA-HNSCC). Recurrence arises in 50% of patients with HNSCC in the years following treatment. In clinicopathological practice, it is difficult to assign patients to classes of risk because no reliable biomarkers are available to predict the outcome of HPV-unrelated HNSCC. In the present study, we investigated the role of Caveolin-1 (Cav1) in the sensitivity of HNSCC cell lines to CTX-radiotherapy that might predict HNSCC relapse. Ctrl- and Cav-1-overexpressing HNSCC cell lines were exposed to solvent, CTX, or irradiation, or exposed to CTX before irradiation. Growth, clonogenicity, cell cycle progression, apoptosis, metabolism and signaling pathways were analyzed. Cav1 expression was analyzed in 173 tumor samples and correlated to locoregional recurrence and overall survival. We showed that Cav1-overexpressing cells demonstrate better survival capacities and remain proliferative and motile when exposed to CTX-radiotherapy. Resistance is mediated by the Cav1/EREG/YAP axis. Patients whose tumors overexpressed Cav1 experienced regional recurrence a few years after adjuvant radiotherapy ± chemotherapy. Together, our observations suggest that a high expression of Cav1 might be predictive of locoregional relapse of LA-HNSCC.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1281 ◽  
Author(s):  
Kacper Guglas ◽  
Tomasz Kolenda ◽  
Maciej Stasiak ◽  
Magda Kopczyńska ◽  
Anna Teresiak ◽  
...  

YRNAs are a class of non-coding RNAs that are components of the Ro60 ribonucleoprotein particle and are essential for initiation of DNA replication. Ro60 ribonucleoprotein particle is a target of autoimmune antibodies in patients suffering from systemic lupus erythematosus and Sjögren’s syndrome. Deregulation of YRNAs has been confirmed in many cancer types, but not in head and neck squamous cell carcinoma (HNSCC). The main aim of this study was to determine the biological role of YRNAs in HNSCC, the expression of YRNAs, and their usefulness as potential HNSCC biomarkers. Using quantitative reverse transcriptase (qRT)-PCR, the expression of YRNAs was measured in HNSCC cell lines, 20 matched cancer tissues, and 70 FFPETs (Formaline-Fixed Paraffin-Embedded Tissue) from HNSCC patients. Using TCGA (The Cancer Genome Atlas) data, an analysis of the expression levels of selected genes, and clinical-pathological parameters was performed. The expression of low and high YRNA1 expressed groups were analysed using gene set enrichment analysis (GSEA). YRNA1 and YRNA5 are significantly downregulated in HNSCC cell lines. YRNA1 was found to be significantly downregulated in patients’ tumour sample. YRNAs were significantly upregulated in T4 stage. YRNA1 showed the highest sensitivity, allowing to distinguish healthy from cancer tissue. An analysis of TCGA data revealed that expression of YRNA1 was significantly altered in the human papilloma virus (HPV) infection status. Patients with medium or high expression of YRNA1 showed better survival outcomes. It was noted that genes correlated with YRNA1 were associated with various processes occurring during cancerogenesis. The GSEA analysis showed high expression enrichment in eight vital processes for cancer development. YRNA1 influence patients’ survival and could be used as an HNSCC biomarker. YRNA1 seems to be a good potential biomarker for HNSCC, however, more studies must be performed and these observations should be verified using an in vitro model.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Aneesha Radhakrishnan ◽  
Vishalakshi Nanjappa ◽  
Remya Raja ◽  
Gajanan Sathe ◽  
Vinuth N. Puttamallesh ◽  
...  

Abstract Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC.


Author(s):  
Michael R. Evans ◽  
Christian T. Fontan ◽  
Claire D. James ◽  
Xu Wang ◽  
Iain M. Morgan ◽  
...  

The incidence of human papillomavirus-related head and neck squamous cell carcinoma (HPV+HNSCC) has reached epidemic levels in the last decade. While prophylactic vaccines will prevent future HPV infections, there are currently no HPV-specific antiviral drugs to treat current HPV infections or HPV+HNSCC. HPV replication and transcription are promising targets for anti-HPV therapeutics, as modulation of these processes can alter expression levels of HPV E6 and E7, which are required for maintenance of the transformed phenotype. This is a particularly attractive target in in HPV+HNSCC where the majority of tumors have episomal genomes replicating in an E1-E2 dependent manner. Here, we describe a model system to study HPV16 E1-E2 mediated DNA replication and HPV16 E2-mediated transcriptional activation and repression in multiple HNSCC cell lines. Our results demonstrate that low levels of IFIT1 are required for HPV16 replication in HNSCC cell lines and HPV16 E1 interacts with IFIT1. Restoration of IFIT1 expression in HNSCC cell lines partially inhibits HPV16 E1-E2 mediated replication. This system can be used to study replication and transcription by HPV16 E1 and E2 in HNSCC as well as be utilized to screen potential anti-HPV therapeutics that target HPV16 replication and transcription.


Author(s):  
Julia Schnoell ◽  
Isabella Stanisz ◽  
Bernhard J. Jank ◽  
Victoria Stanek ◽  
Rainer Schmid ◽  
...  

SummaryIntroduction. Zerumbone is a phytochemical compound of the ginger plant Zingiber zerumbet with cytotoxic effects in various cancer cell lines. To date, zerumbone has shown an antiproliferative effect in oral squamous cell carcinoma cells lines. However, the effect of combination with radiation or cisplatin in head and neck squamous cell carcinoma (HNSCC) is unclear. The aim of this study was to investigate the effect of zerumbone alone, and in combination with irradiation and cisplatin on HNSCC cell lines. Methods. The three HNSCC cell lines SCC25, Cal27 and FaDu were treated with zerumbone, radiation and/or cisplatin. Cell viability and clonogenic assays were performed. The interaction between zerumbone and radiation or cisplatin was evaluated using the combination index. Apoptosis was measured by flow cytometry and cell migration was assessed using a wound healing assay. Results. Treatment with zerumbone resulted in a dose dependent induction of cytotoxicity and apoptosis in all three cell lines. The combination with cisplatin revealed a synergistic to additive effect in Cal27. The clonogenic assay showed a significant radiosensitizing effect in all three cell lines. The wound healing assay showed a reduction of cell migration in Cal27. Conclusion. The natural compound zerumbone shows a cytotoxic and proapoptotic effect on HNSCC cell lines. Furthermore, zerumbone enhances the radiation effect in all three cell lines and thus may be a suitable candidate for combination therapy in HNSCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katja Tuomainen ◽  
Aini Hyytiäinen ◽  
Ahmed Al-Samadi ◽  
Philipp Ianevski ◽  
Aleksandr Ianevski ◽  
...  

AbstractConventional chemotherapeutic agents are nonselective, often resulting in severe side effects and the development of resistance. Therefore, new molecular-targeted therapies are urgently needed to be integrated into existing treatment regimens. Here, we performed a high-throughput compound screen to identify a synergistic interaction between ionizing radiation and 396 anticancer compounds. The assay was run using five human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) cell lines cultured on the human tumor-derived matrix Myogel. Our screen identified several compounds with strong synergistic and antagonistic effects, which we further investigated using multiple irradiation doses. Navitoclax, which emerged as the most promising radiosensitizer, exhibited synergy with irradiation regardless of the p53 mutation status in all 13 HNSCC cell lines. We performed a live cell apoptosis assay for two representative HNSCC cell lines to examine the effects of navitoclax and irradiation. As a single agent, navitoclax reduced proliferation and induced apoptosis in a dose-dependent manner, whereas the navitoclax–irradiation combination arrested cell cycle progression and resulted in substantially elevated apoptosis. Overall, we demonstrated that combining navitoclax with irradiation resulted in synergistic in vitro antitumor effects in HNSCC cell lines, possibly indicating the therapeutic potential for HNSCC patients.


Sign in / Sign up

Export Citation Format

Share Document