scholarly journals Intra-Tumoral Activation of Endosomal TLR Pathways Reveals a Distinct Role for TLR3 Agonist Dependent Type-1 Interferons in Shaping the Tumor Immune Microenvironment

2021 ◽  
Vol 11 ◽  
Author(s):  
Graham Thomas ◽  
Luca Micci ◽  
Wenjing Yang ◽  
Joseph Katakowski ◽  
Cecilia Oderup ◽  
...  

Toll-like receptor (TLR) agonists have received considerable attention as therapeutic targets for cancer immunotherapy owing to their ability to convert immunosuppressive tumor microenvironments towards a more T-cell inflamed phenotype. However, TLRs differ in their cell expression profiles and intracellular signaling pathways, raising the possibility that distinct TLRs differentially influence the tumor immune microenvironment. Using single-cell RNA-sequencing, we address this by comparing the tumor immune composition of B16F10 melanoma following treatment with agonists of TLR3, TLR7, and TLR9. Marked differences are observed between treatments, including decreased tumor-associated macrophages upon TLR7 agonist treatment. A biased type-1 interferon signature is elicited upon TLR3 agonist treatment as opposed to a type-2 interferon signature with TLR9 agonists. TLR3 stimulation was associated with increased macrophage antigen presentation gene expression and decreased expression of PD-L1 and the inhibitory receptors Pirb and Pilra on infiltrating monocytes. Furthermore, in contrast to TLR7 and TLR9 agonists, TLR3 stimulation ablated FoxP3 positive CD4 T cells and elicited a distinct CD8 T cell activation phenotype highlighting the potential for distinct synergies between TLR agonists and combination therapy agents.

1993 ◽  
Vol 178 (6) ◽  
pp. 2107-2113 ◽  
Author(s):  
A J da Silva ◽  
O Janssen ◽  
C E Rudd

Intracellular signaling from the T cell receptor (TCR)zeta/CD3 complex is likely to be mediated by associated protein tyrosine kinases such as p59fyn(T), ZAP-70, and the CD4:p56lck and CD8:p56lck coreceptors. The nature of the signaling cascade initiated by these kinases, their specificities, and downstream targets remain to be elucidated. The TCR-zeta/CD3:p59fyn(T) complex has previously been noted to coprecipitate a 120/130-kD doublet (p120/130). This intracellular protein of unknown identity associates directly with p59fyn(T) within the receptor complex. In this study, we have shown that this interaction with p120/130 is specifically mediated by the SH2 domain (not the fyn-SH3 domain) of p59fyn(T). Further, based on the results of in vitro kinase assays, p120/130 appears to be preferentially associated with p59fyn(T) in T cells, and not with p56lck. Antibody reprecipitation studies identified p120/130 as a previously described 130-kD substrate of pp60v-src whose function and structure is unknown. TCR-zeta/CD3 induced activation of T cells augmented the tyrosine phosphorylation of p120/130 in vivo as detected by antibody and GST:fyn-SH2 fusion proteins. p120/130 represents the first identified p59fyn(T):SH2 binding substrate in T cells, and as such is likely to play a key role in the early events of T cell activation.


2003 ◽  
Vol 278 (18) ◽  
pp. 15550-15557 ◽  
Author(s):  
Seung-jae Kim ◽  
Wei Ding ◽  
Björn Albrecht ◽  
Patrick L. Green ◽  
Michael D. Lairmore

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi92-vi92
Author(s):  
Mirco Friedrich ◽  
Lukas Bunse ◽  
Roman Sankowski ◽  
Wolfgang Wick ◽  
Marco Prinz ◽  
...  

Abstract The glioma microenvironment orchestrates tumor evolution, progression, and resistance to therapy. In high-grade gliomas, microglia and monocyte-derived macrophages constitute up to 70% of the tumor mass. However, the dynamics and phenotypes of intratumoral myeloid cells during tumor progression are poorly understood. Here we define myeloid cellular states in gliomas by longitudinal single-cell profiling and demonstrate their strict control by the tumor genotype. We report the unexpected and clinically highly relevant finding that human as well as murine gliomas with Isocitrate Dehydrogenase (IDH)1-R132H, a key oncogenic driver mutation of glioma, subdue their innate immune microenvironment by prompting a multifaceted reprogramming of myeloid and T cell metabolism. We employed integrated single-cell transcriptomic, time-of-flight mass cytometry and proteomic analyses of human healthy cortex control and glioma samples to identify myeloid cell subsets with distinct fates in IDH-mutated glioma that diverge from canonical trajectories of antigen-presenting cells as a result of a monocyte-to-macrophage differentiation block. Moving beyond single time point assessments, we now longitudinally describe differential immune cell infiltration and phenotype dynamics during glioma progression that are orchestrated by a fluctuating network of resident microglial cells and educated recruited immune cells. IDH mutations in glioma induce a tolerogenic alignment of their immune microenvironment through increased tryptophan uptake via large neutral amino acid transporter (LAT1)-CD98 and subsequent activation of the aryl hydrocarbon receptor (AHR) in educated blood-borne macrophages. In experimental tumor models, this immunosuppressive phenotype was reverted by LAT1-CD98 and AHR inhibitors. Taken together with direct effects on T cell activation, our findings not only link this oncogenic metabolic pathway to distinct immunosuppressive pathways but also provide the rationale and novel molecular targets for the development of immunotherapeutic concepts addressing the disease-defining microenvironmental effects of IDH mutations.


2000 ◽  
Vol 278 (6) ◽  
pp. L1221-L1230 ◽  
Author(s):  
Holger Garn ◽  
Anke Friedetzky ◽  
Andrea Kirchner ◽  
Ruth Jäger ◽  
Diethard Gemsa

In chronic silicosis, mechanisms leading to lymphocyte activation are still poorly understood, although it is well known that not only the lung but also the draining lymph nodes are affected. In the present study, we investigated T-cell activation by analysis of cytokine expression in the enlarged thoracic lymph nodes of rats 2 mo after an 8-day silica aerosol exposure. In the case of helper T cell (Th) type 1 cytokines, we found a significant increase in interferon (IFN)-γ mRNA expression, whereas interleukin (IL)-2 expression remained unchanged. In contrast, gene transcription for the Th2-type cytokines IL-4 and IL-10 was diminished. In addition, with use of an in vitro lymphocyte-macrophage coculture system, an enhanced IFN-γ and a reduced IL-10 release were shown with cells from silicotic animals. With regard to IFN-γ-inducing cytokines, we observed enhanced IL-12 mRNA levels in vivo, whereas IL-18 gene expression was slightly decreased. These data indicate that a persistent shift toward an IFN-γ-dominated type 1 (Th1/cytotoxic T cell type 1) T-cell reaction pattern occurred within the thoracic lymph nodes of silicotic animals. Thus a mutual activation of lymphocytes and macrophages may maintain the chronic inflammatory changes that characterize silicosis.


2008 ◽  
Vol 31 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Johanna Aarnisalo ◽  
Andras Treszl ◽  
Peter Svec ◽  
Jane Marttila ◽  
Viveka Öling ◽  
...  

2005 ◽  
Vol 21 (9) ◽  
pp. 791-798 ◽  
Author(s):  
Andrea Hanson ◽  
Abdoulaye Dieng Sarr ◽  
Amy Shea ◽  
Norman Jones ◽  
Souleymane Mboup ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document