scholarly journals Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning

2021 ◽  
Vol 11 ◽  
Author(s):  
Hyo-jae Lee ◽  
Anh-Tien Nguyen ◽  
So Yeon Ki ◽  
Jong Eun Lee ◽  
Luu-Ngoc Do ◽  
...  

ObjectiveThis study was conducted in order to investigate the feasibility of using radiomics analysis (RA) with machine learning algorithms based on breast magnetic resonance (MR) images for discriminating malignant from benign MR-detected additional lesions in patients with primary breast cancer.Materials and MethodsOne hundred seventy-four MR-detected additional lesions (benign, n = 86; malignancy, n = 88) from 158 patients with ipsilateral primary breast cancer from a tertiary medical center were included in this retrospective study. The entire data were randomly split to training (80%) and independent test sets (20%). In addition, 25 patients (benign, n = 21; malignancy, n = 15) from another tertiary medical center were included for the external test. Radiomics features that were extracted from three regions-of-interest (ROIs; intratumor, peritumor, combined) using fat-saturated T1-weighted images obtained by subtracting pre- from postcontrast images (SUB) and T2-weighted image (T2) were utilized to train the support vector machine for the binary classification. A decision tree method was utilized to build a classifier model using clinical imaging interpretation (CII) features assessed by radiologists. Area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, and specificity were used to compare the diagnostic performance.ResultsThe RA models trained using radiomics features from the intratumor-ROI showed comparable performance to the CII model (accuracy, AUROC: 73.3%, 69.6% for the SUB RA model; 70.0%, 75.1% for the T2 RA model; 73.3%, 72.0% for the CII model). The diagnostic performance increased when the radiomics and CII features were combined to build a fusion model. The fusion model that combines the CII features and radiomics features from multiparametric MRI data demonstrated the highest performance with an accuracy of 86.7% and an AUROC of 91.1%. The external test showed a similar pattern where the fusion models demonstrated higher levels of performance compared with the RA- or CII-only models. The accuracy and AUROC of the SUB+T2 RA+CII model in the external test were 80.6% and 91.4%, respectively.ConclusionOur study demonstrated the feasibility of using RA with machine learning approach based on multiparametric MRI for quantitatively characterizing MR-detected additional lesions. The fusion model demonstrated an improved diagnostic performance over the models trained with either RA or CII alone.

Author(s):  
Cheng-Chien Lai ◽  
Wei-Hsin Huang ◽  
Betty Chia-Chen Chang ◽  
Lee-Ching Hwang

Predictors for success in smoking cessation have been studied, but a prediction model capable of providing a success rate for each patient attempting to quit smoking is still lacking. The aim of this study is to develop prediction models using machine learning algorithms to predict the outcome of smoking cessation. Data was acquired from patients underwent smoking cessation program at one medical center in Northern Taiwan. A total of 4875 enrollments fulfilled our inclusion criteria. Models with artificial neural network (ANN), support vector machine (SVM), random forest (RF), logistic regression (LoR), k-nearest neighbor (KNN), classification and regression tree (CART), and naïve Bayes (NB) were trained to predict the final smoking status of the patients in a six-month period. Sensitivity, specificity, accuracy, and area under receiver operating characteristic (ROC) curve (AUC or ROC value) were used to determine the performance of the models. We adopted the ANN model which reached a slightly better performance, with a sensitivity of 0.704, a specificity of 0.567, an accuracy of 0.640, and an ROC value of 0.660 (95% confidence interval (CI): 0.617–0.702) for prediction in smoking cessation outcome. A predictive model for smoking cessation was constructed. The model could aid in providing the predicted success rate for all smokers. It also had the potential to achieve personalized and precision medicine for treatment of smoking cessation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qi Wan ◽  
Jiaxuan Zhou ◽  
Xiaoying Xia ◽  
Jianfeng Hu ◽  
Peng Wang ◽  
...  

ObjectiveTo evaluate the performance of 2D and 3D radiomics features with different machine learning approaches to classify SPLs based on magnetic resonance(MR) T2 weighted imaging (T2WI).Material and MethodsA total of 132 patients with pathologically confirmed SPLs were examined and randomly divided into training (n = 92) and test datasets (n = 40). A total of 1692 3D and 1231 2D radiomics features per patient were extracted. Both radiomics features and clinical data were evaluated. A total of 1260 classification models, comprising 3 normalization methods, 2 dimension reduction algorithms, 3 feature selection methods, and 10 classifiers with 7 different feature numbers (confined to 3–9), were compared. The ten-fold cross-validation on the training dataset was applied to choose the candidate final model. The area under the receiver operating characteristic curve (AUC), precision-recall plot, and Matthews Correlation Coefficient were used to evaluate the performance of machine learning approaches.ResultsThe 3D features were significantly superior to 2D features, showing much more machine learning combinations with AUC greater than 0.7 in both validation and test groups (129 vs. 11). The feature selection method Analysis of Variance(ANOVA), Recursive Feature Elimination(RFE) and the classifier Logistic Regression(LR), Linear Discriminant Analysis(LDA), Support Vector Machine(SVM), Gaussian Process(GP) had relatively better performance. The best performance of 3D radiomics features in the test dataset (AUC = 0.824, AUC-PR = 0.927, MCC = 0.514) was higher than that of 2D features (AUC = 0.740, AUC-PR = 0.846, MCC = 0.404). The joint 3D and 2D features (AUC=0.813, AUC-PR = 0.926, MCC = 0.563) showed similar results as 3D features. Incorporating clinical features with 3D and 2D radiomics features slightly improved the AUC to 0.836 (AUC-PR = 0.918, MCC = 0.620) and 0.780 (AUC-PR = 0.900, MCC = 0.574), respectively.ConclusionsAfter algorithm optimization, 2D feature-based radiomics models yield favorable results in differentiating malignant and benign SPLs, but 3D features are still preferred because of the availability of more machine learning algorithmic combinations with better performance. Feature selection methods ANOVA and RFE, and classifier LR, LDA, SVM and GP are more likely to demonstrate better diagnostic performance for 3D features in the current study.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Shi-Jer Lou ◽  
Ming-Feng Hou ◽  
Hong-Tai Chang ◽  
Hao-Hsien Lee ◽  
Chong-Chi Chiu ◽  
...  

Machine learning algorithms have proven to be effective for predicting survival after surgery, but their use for predicting 10-year survival after breast cancer surgery has not yet been discussed. This study compares the accuracy of predicting 10-year survival after breast cancer surgery in the following five models: a deep neural network (DNN), K nearest neighbor (KNN), support vector machine (SVM), naive Bayes classifier (NBC) and Cox regression (COX), and to optimize the weighting of significant predictors. The subjects recruited for this study were breast cancer patients who had received breast cancer surgery (ICD-9 cm 174–174.9) at one of three southern Taiwan medical centers during the 3-year period from June 2007, to June 2010. The registry data for the patients were randomly allocated to three datasets, one for training (n = 824), one for testing (n = 177), and one for validation (n = 177). Prediction performance comparisons revealed that all performance indices for the DNN model were significantly (p < 0.001) higher than in the other forecasting models. Notably, the best predictor of 10-year survival after breast cancer surgery was the preoperative Physical Component Summary score on the SF-36. The next best predictors were the preoperative Mental Component Summary score on the SF-36, postoperative recurrence, and tumor stage. The deep-learning DNN model is the most clinically useful method to predict and to identify risk factors for 10-year survival after breast cancer surgery. Future research should explore designs for two-level or multi-level models that provide information on the contextual effects of the risk factors on breast cancer survival.


2021 ◽  
Vol 23 (11) ◽  
pp. 749-758
Author(s):  
Saranya N ◽  
◽  
Kavi Priya S ◽  

Breast Cancer is one of the chronic diseases occurred to human beings throughout the world. Early detection of this disease is the most promising way to improve patients’ chances of survival. The strategy employed in this paper is to select the best features from various breast cancer datasets using a genetic algorithm and machine learning algorithm is applied to predict the outcomes. Two machine learning algorithms such as Support Vector Machines and Decision Tree are used along with Genetic Algorithm. The proposed work is experimented on five datasets such as Wisconsin Breast Cancer-Diagnosis Dataset, Wisconsin Breast Cancer-Original Dataset, Wisconsin Breast Cancer-Prognosis Dataset, ISPY1 Clinical trial Dataset, and Breast Cancer Dataset. The results exploit that SVM-GA achieves higher accuracy of 98.16% than DT-GA of 97.44%.


Author(s):  
Peter T. Habib ◽  
Alsamman M. Alsamman ◽  
Sameh E. Hassnein ◽  
Ghada A. Shereif ◽  
Aladdin Hamwieh

Abstractin 2019, estimated New Cases 268.600, Breast cancer has one of the most common cancers and is one of the world’s leading causes of death for women. Classification and data mining is an efficient way to classify information. Particularly in the medical field where prediction techniques are commonly used for early detection and effective treatment in diagnosis and research.These paper tests models for the mammogram analysis of breast cancer information from 23 of the more widely used machine learning algorithms such as Decision Tree, Random forest, K-nearest neighbors and support vector machine. The spontaneously splits results are distributed from a replicated 10-fold cross-validation method. The accuracy calculated by Regression Metrics such as Mean Absolute Error, Mean Squared Error, R2 Score and Clustering Metrics such as Adjusted Rand Index, Homogeneity, V-measure.accuracy has been checked F-Measure, AUC, and Cross-Validation. Thus, proper identification of patients with breast cancer would create care opportunities, for example, the supervision and the implementation of intervention plans could benefit the quality of long-term care. Experimental results reveal that the maximum precision 100%with the lowest error rate is obtained with Ada-boost Classifier.


2019 ◽  
Vol 8 (2) ◽  
pp. 5401-5405

Breast cancer is an alarming disease which takes millions of lives every year. In 2018, it was anticipated that 627,000 women died due to breast cancer – which is around 15% of all deaths caused due to different types of cancers among women. Currently, risk factors of breast cancer cannot be avoided, and early detection is the only way of survival. Automated detection of breast cancer with the help of image processing methods and machine learning algorithms helps in giving more accurate results and less human power. In the proposed system, multiple features are extracted using HSV histogram, LBP, GLCM, 2-D DWT. Support vector machine and LIBSVM classifiers are used for the classification of mammogram images if it’s benign or malign in nature. For classification, the INbreast dataset have been used which includes 115 cases containing 410 images. The dataset is divided into benign and malign category based upon BI-RAIDS scale. According to this partition we have 243 benign images and 100 malign images present in this dataset and a feature matrix of 595 features in total is generated for balanced and unbalanced datasets respectively and fed into SVM and LIBSVM to distinguish the data. The balanced datasets on LIBSVM gave best results with 92% accuracy, 84% sensitivity, 100% specificity and 91.30% F1 score followed by SVM which gave 75% accuracy, 73.61% sensitivity, 76.66% specificity and 75.8% F1 score.


2021 ◽  
Vol 7 ◽  
pp. e390
Author(s):  
Shafaq Abbas ◽  
Zunera Jalil ◽  
Abdul Rehman Javed ◽  
Iqra Batool ◽  
Mohammad Zubair Khan ◽  
...  

Breast cancer is one of the leading causes of death in the current age. It often results in subpar living conditions for a patient as they have to go through expensive and painful treatments to fight this cancer. One in eight women all over the world is affected by this disease. Almost half a million women annually do not survive this fight and die from this disease. Machine learning algorithms have proven to outperform all existing solutions for the prediction of breast cancer using models built on the previously available data. In this paper, a novel approach named BCD-WERT is proposed that utilizes the Extremely Randomized Tree and Whale Optimization Algorithm (WOA) for efficient feature selection and classification. WOA reduces the dimensionality of the dataset and extracts the relevant features for accurate classification. Experimental results on state-of-the-art comprehensive dataset demonstrated improved performance in comparison with eight other machine learning algorithms: Support Vector Machine (SVM), Random Forest, Kernel Support Vector Machine, Decision Tree, Logistic Regression, Stochastic Gradient Descent, Gaussian Naive Bayes and k-Nearest Neighbor. BCD-WERT outperformed all with the highest accuracy rate of 99.30% followed by SVM achieving 98.60% accuracy. Experimental results also reveal the effectiveness of feature selection techniques in improving prediction accuracy.


2021 ◽  
Vol 12 (4) ◽  
pp. 117-137
Author(s):  
Mazen Mobtasem El-Lamey ◽  
Mohab Mohammed Eid ◽  
Muhammad Gamal ◽  
Nour-Elhoda Mohamed Bishady ◽  
Ali Wagdy Mohamed

There are many cancer patients, especially breast cancer patients as it is the most common type of cancer. Due to the huge number of breast cancer patients, many breast cancer-focused hospitals aren't able to process the huge number of patients and might expose some women to late stages of cancer. Thus, the automation of the process can help these hospitals in speeding up the process of cancer detection. In this paper, the authors test several machine learning models such as k-nearest neighbours (KNN), support vector machine (SVM), and artificial neural network (ANN). They then compare their accuracies and losses with themselves and other models that have been developed by other researchers to see whether their approach is efficient or not and to decide what machine learning algorithm is best to use.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 919
Author(s):  
Isaac Daimiel Naranjo ◽  
Peter Gibbs ◽  
Jeffrey S. Reiner ◽  
Roberto Lo Gullo ◽  
Caleb Sooknanan ◽  
...  

The purpose of this multicenter retrospective study was to evaluate radiomics analysis coupled with machine learning (ML) of dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) radiomics models separately and combined as multiparametric MRI for improved breast cancer detection. Consecutive patients (Memorial Sloan Kettering Cancer Center, January 2018–March 2020; Medical University Vienna, from January 2011–August 2014) with a suspicious enhancing breast tumor on breast MRI categorized as BI-RADS 4 and who subsequently underwent image-guided biopsy were included. In 93 patients (mean age: 49 years ± 12 years; 100% women), there were 104 lesions (mean size: 22.8 mm; range: 7–99 mm), 46 malignant and 58 benign. Radiomics features were calculated. Subsequently, the five most significant features were fitted into multivariable modeling to produce a robust ML model for discriminating between benign and malignant lesions. A medium Gaussian support vector machine (SVM) model with five-fold cross validation was developed for each modality. A model based on DWI-extracted features achieved an AUC of 0.79 (95% CI: 0.70–0.88), whereas a model based on DCE-extracted features yielded an AUC of 0.83 (95% CI: 0.75–0.91). A multiparametric radiomics model combining DCE- and DWI-extracted features showed the best AUC (0.85; 95% CI: 0.77–0.92) and diagnostic accuracy (81.7%; 95% CI: 73.0–88.6). In conclusion, radiomics analysis coupled with ML of multiparametric MRI allows an improved evaluation of suspicious enhancing breast tumors recommended for biopsy on clinical breast MRI, facilitating accurate breast cancer diagnosis while reducing unnecessary benign breast biopsies.


Sign in / Sign up

Export Citation Format

Share Document