scholarly journals A New Case of de novo Variant c.892C>T (p.Arg298Trp) in NACC1: A First Case Report From China

2021 ◽  
Vol 9 ◽  
Author(s):  
Baiyu Lyu ◽  
Yan Dong ◽  
Juan Kang

Background: The nucleus accumbens associated 1 (NACC1) gene is a transcription factor member of the BTB/POZ family. A de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1 may define a syndrome characterized by intellectual disability, infantile epilepsy, congenital cataract, and feeding difficulties.Case Presentation: We report a new case with a neurodevelopmental disorder characterized by severe intellectual disability, infantile epilepsy, congenital cataract, and feeding difficulties. Brain MRI reveals brain dysplasia. We observe a de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1 gene in this case. Now, the child regularly goes to the hospital for rehabilitation training (once a month). Sodium Valproate (10 mg/kg/day) and Clobazam (10 mg/kg/day) are used in the treatment of epilepsy. A total of three articles were screened, and two papers were excluded. The search revealed one article related to a syndrome caused by a de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1; they screened the main clinical features of eight cases of a syndrome, which were summarized and analyzed.Conclusions: The NACC1 gene is a member of the BTB/POZ family of transcription factors. A de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1 may define a syndrome characterized by intellectual disability, infantile epilepsy, congenital cataract, and feeding difficulties. At present, there is no effective cure. In the future, we need more cases to determine the phenotype–genotype correlation of NACC1 variants. Many questions remain to be answered, and many challenges remain to be faced. Future transcriptional studies may further clarify this rare, recurrent variant, and could potentially lead to targeted therapies.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ke Wu ◽  
Yan Cong

Abstract Background Bainbridge-Ropers syndrome (BRPS) [OMIM#615485] is a neurodevelopmental disorder, characterized by delayed psychomotor development with generalized hypotonia, moderate to severe intellectual disability, poor or absent speech, feeding difficulties, growth failure, dysmorphic craniofacial features and minor skeletal features. The aim of this study was to investigate the genetic etiology of a Sudanese boy with severe developmental delay, intellectual disability, and craniofacial phenotype using trio-based whole-exome sequencing. To our knowledge, no patients with ASXL3 gene variant c.3043C>T have been reported detailedly in literature. Case presentation The patient (male, 3 years 6 months) was the first born of a healthy non-consanguineous couple originating from Sudan, treated for “psychomotor retardation” for more than 8 months in Yiwu. The patient exhibited severely delayed milestones in physiological and intellectual developmental stages, language impairment, poor eye-contact, lack of subtle motions of fingers, fear of claustrophobic space, hypotonia, clinodactyly, autistic features. Peripheral blood samples were collected from the patient and his parents. Trio-based whole-exome sequencing(Trio-WES) identified a de novo heterozygous ASXL3 gene variant c.3043C>T;p.Q1015X. Sanger sequencing verified variants of this family. Conclusion Trio-WES analysis identified a de novo nonsense variant (c.3043C>T) of ASXL3 gene in a Sudanese boy. To our knowledge, the patient with this variant has not been reported previously in literature. This study presents a new case for ASXL3 gene variants, which expanded the mutational and phenotypic spectrum.


2019 ◽  
Author(s):  
Francesca Mattioli ◽  
Gaelle Hayot ◽  
Nathalie Drouot ◽  
Bertrand Isidor ◽  
Jérémie Courraud ◽  
...  

ABSTRACTThe Neuro-Oncological Ventral Antigen 2 NOVA2 protein is a major factor regulating neuron specific alternative splicing, previously associated with an acquired neurologic condition, the paraneoplastic opsoclonus-myoclonus ataxia (POMA). We report here six individuals with de novo frameshift variants in the NOVA2 gene affected with a severe neurodevelopmental disorder characterized by intellectual disability (ID), motor and speech delay, autistic features, hypotonia, feeding difficulties, spasticity or ataxic gait and abnormal brain MRI. The six variants lead to the same reading frame, adding a common 133 aa long proline rich C-terminus part instead of the last KH RNA binding domain. We detected forty-one genes differentially spliced after NOVA2 inactivation in human neural cells. The mutant NOVA2 protein shows decreased ability to bind a target RNA, to regulate specific splicing events and to rescue the phenotype of altered retinotectal axonal pathfinding induced by loss of NOVA2 ortholog in zebrafish. Our results suggest a partial loss-of-function mechanism rather than a full heterozygous loss of function, although a specific contribution of the novel C terminal extension cannot be excluded on the basis of the genetic findings.


2018 ◽  
Vol 08 (01) ◽  
pp. 010-014 ◽  
Author(s):  
Wafa Alazaizeh ◽  
Asem Alkhateeb

AbstractIntellectual disability is a common condition with multiple etiologies. The number of monogenic causes has increased steadily in recent years due to the implementation of next generation sequencing. Here, we describe a 2-year-old boy with global developmental delay and intellectual disability. The child had feeding difficulties since birth. He had delayed motor skills and muscular hypotonia. Brain magnetic resonance imaging revealed diffuse white matter loss and thinning of the corpus callosum. Banded karyotype and comparative genomic hybridization (CGH) array were normal. Whole exome sequencing revealed a novel de novo frameshift mutation c.3390delA (p.Lys1130Asnfs*4) in KAT6A gene (NM_006766.4). The heterozygous mutation was confirmed by Sanger sequencing in the patient and its absence in his parents. KAT6A that encodes a histone acetyltransferase has been recently found to be associated with a neurodevelopmental disorder autosomal dominant mental retardation 32 (OMIM: no. 616268). Features of this disorder are nonspecific, which makes it difficult to characterize the condition based on the clinical symptoms alone. Therefore, our findings confirm the utility of whole exome sequencing to quickly and reliably identify the etiology of such conditions.


2017 ◽  
Vol 3 (6) ◽  
pp. e206 ◽  
Author(s):  
Carla Marini ◽  
Michele Romoli ◽  
Elena Parrini ◽  
Cinzia Costa ◽  
Davide Mei ◽  
...  

Objective:To describe electroclinical features and outcome of 6 patients harboring KCNB1 mutations.Methods:Clinical, EEG, neuropsychological, and brain MRI data analysis. Targeted next-generation sequencing of a 95 epilepsy gene panel.Results:The mean age at seizure onset was 11 months. The mean follow-up of 11.3 years documented that 4 patients following an infantile phase of frequent seizures became seizure free; the mean age at seizure offset was 4.25 years. Epilepsy phenotypes comprised West syndrome in 2 patients, infantile-onset unspecified generalized epilepsy, myoclonic and photosensitive eyelid myoclonia epilepsy resembling Jeavons syndrome, Lennox-Gastaut syndrome, and focal epilepsy with prolonged occipital or clonic seizures in each and every one. Five patients had developmental delay prior to seizure onset evolving into severe intellectual disability with absent speech and autistic traits in one and stereotypic hand movements with impulse control disorder in another. The patient with Jeavons syndrome evolved into moderate intellectual disability. Mutations were de novo, 4 missense and 2 nonsense, 5 were novel, and 1 resulted from somatic mosaicism.Conclusions:KCNB1-related manifestations include a spectrum of infantile-onset generalized or focal seizures whose combination leads to early infantile epileptic encephalopathy including West, Lennox-Gastaut, and Jeavons syndromes. Long-term follow-up highlights that following a stormy phase, seizures subside or cease and treatment may be eased or withdrawn. Cognitive and motor functions are almost always delayed prior to seizure onset and evolve into severe, persistent impairment. Thus, KCNB1 mutations are associated with diffuse brain dysfunction combining seizures, motor, and cognitive impairment.


2015 ◽  
Vol 112 (34) ◽  
pp. E4697-E4706 ◽  
Author(s):  
Bin Tang ◽  
Tingting Wang ◽  
Huida Wan ◽  
Li Han ◽  
Xiaoyan Qin ◽  
...  

Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by severe intellectual disability and other symptoms including autism. Although caused by the silencing of a single gene, Fmr1 (fragile X mental retardation 1), the complexity of FXS pathogenesis is amplified because the encoded protein, FMRP, regulates the activity-dependent translation of numerous mRNAs. Although the mRNAs that associate with FMRP have been extensively studied, little is known regarding the proteins whose expression levels are altered, directly or indirectly, by loss of FMRP during brain development. Here we systematically measured protein expression in neocortical synaptic fractions from Fmr1 knockout (KO) and wild-type (WT) mice at both adolescent and adult stages. Although hundreds of proteins are up-regulated in the absence of FMRP in young mice, this up-regulation is largely diminished in adulthood. Up-regulated proteins included previously unidentified as well as known targets involved in synapse formation and function and brain development and others linked to intellectual disability and autism. Comparison with putative FMRP target mRNAs and autism susceptibility genes revealed substantial overlap, consistent with the idea that the autism endophenotype of FXS is due to a “multiple hit” effect of FMRP loss, particularly within the PSD95 interactome. Through studies of de novo protein synthesis in primary cortical neurons from KO and WT mice, we found that neurons lacking FMRP produce nascent proteins at higher rates, many of which are synaptic proteins and encoded by FMRP target mRNAs. Our results provide a greatly expanded view of protein changes in FXS and identify age-dependent effects of FMRP in shaping the neuronal proteome.


2021 ◽  
pp. jmedgenet-2020-107430
Author(s):  
Maria Lisa Dentici ◽  
Viola Alesi ◽  
Mathieu Quinodoz ◽  
Barbara Robens ◽  
Andrea Guerin ◽  
...  

BackgroundNext-generation sequencing, combined with international pooling of cases, has impressively enhanced the discovery of genes responsible for Mendelian neurodevelopmental disorders, particularly in individuals affected by clinically undiagnosed diseases. To date, biallelic missense variants in ZNF526 gene, encoding a Krüppel-type zinc-finger protein, have been reported in three families with non-syndromic intellectual disability.MethodsHere, we describe five individuals from four unrelated families with an undiagnosed neurodevelopmental disorder in which we performed exome sequencing, on a combination of trio-based (4 subjects) or single probands (1 subject).ResultsWe identified five patients from four unrelated families with homozygous ZNF526 variants by whole exome sequencing. Four had variants resulting in truncation of ZNF526; they were affected by severe prenatal and postnatal microcephaly (ranging from −4 SD to −8 SD), profound psychomotor delay, hypertonic–dystonic movements, epilepsy and simplified gyral pattern on MRI. All of them also displayed bilateral progressive cataracts. A fifth patient had a homozygous missense variant and a slightly less severe disorder, with postnatal microcephaly (−2 SD), progressive bilateral cataracts, severe intellectual disability and unremarkable brain MRI.Mutant znf526 zebrafish larvae had notable malformations of the eye and central nervous system, resembling findings seen in the human holoprosencephaly spectrum.ConclusionOur findings support the role of ZNF526 biallelic variants in a complex neurodevelopmental disorder, primarily affecting brain and eyes, resulting in severe microcephaly, simplified gyral pattern, epileptic encephalopathy and bilateral cataracts.


2017 ◽  
Vol 55 (2) ◽  
pp. 104-113 ◽  
Author(s):  
Margot R F Reijnders ◽  
Robert Janowski ◽  
Mohsan Alvi ◽  
Jay E Self ◽  
Ton J van Essen ◽  
...  

BackgroundDe novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia.ObjectivesTo delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations.MethodsDiagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes.ResultsWe report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes.ConclusionWe delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity.


Brain ◽  
2018 ◽  
Vol 141 (9) ◽  
pp. 2576-2591 ◽  
Author(s):  
Kate Baker ◽  
Sarah L Gordon ◽  
Holly Melland ◽  
Fabian Bumbak ◽  
Daniel J Scott ◽  
...  

Baker, Gordon et al. present the first international case series describing the neurodevelopmental disorder associated with Synaptotagmin 1 (SYT1) de novo missense mutations. Key features include movement abnormalities, severe intellectual disability, and hallmark EEG alterations. Expression of patients’ SYT1 mutations in mouse neurons disturbs presynaptic vesicle dynamics in a mutation-specific manner.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Sawsan AlBaazi ◽  
Hula Shareef

Abstract Background Pitt-Hopkins syndrome (PHS) is a rare cause of severe intellectual disability, seizures, language impairment, and peculiar facial dysmorphism. It is caused by a mutation in transcription factor 4 (TCF4). Through molecular karyotyping and mutational analysis, a study identified recessive defects in two genes, contactin associated protein like 2 (CNTNAP2) and Neurexin I (NRXN1), in patients with similar presentations of Pitt-Hopkins syndrome and called Pitt-Hopkins-like syndrome (Zweier et al., J Med Genet 80: 994-1001, 2007). We present the first case report of a child in Iraq with Pitt-Hopkins-like syndrome that was referred to the Welfare Children’s Hospital/Medical City of Baghdad because of her intellectual disability. Case presentation The patient was 4-year-old female child who presented with psychomotor delay and language impairment. She had frequent attacks of the respiratory tract and eye infections. Ophthalmologic examination revealed left-sided esotropia and severe myopia. Routine hematologic, serologic, and chemistry tests were within normal ranges. EEG revealed diffuse theta slowing and diffuse beta activity. The audiological test was normal. NCS and EMG showed normal results. Echo study, chest X-ray, and abdominal/pelvic ultrasound revealed normal findings. Brain MRI showed mild bilateral frontal-temporal atrophy. Whole-exome sequencing (WES) revealed a homozygous stop mutation in CNTNAP2 with a heterozygous state in both parents. Conclusion Intellectual disability may result from different types of abnormal cellular processes and with widening the use of molecular gene analysis in cases of intellectual disability, underdiagnosed cases of Pitt-Hopkins and Pitt-Hopkins-like syndromes may be uncovered.


Author(s):  
Evan Jiang ◽  
Mark P. Fitzgerald ◽  
Katherine L. Helbig ◽  
Ethan M. Goldberg

AbstractInterleukin-1 receptor accessory protein-like 1 (IL1RAPL1) encodes a protein that is highly expressed in neurons and has been shown to regulate neurite outgrowth as well as synapse formation and synaptic transmission. Clinically, mutations in or deletions of IL1RAPL1 have been associated with a spectrum of neurological dysfunction including autism spectrum disorder and nonsyndromic X-linked developmental delay/intellectual disability of varying severity. Nearly all reported cases are in males; in the few reported cases involving females, the clinical presentation was mild or the deletion was identified in phenotypically normal carriers in accordance with X-linked inheritance. Using genome-wide microarray analysis, we identified a novel de novo 373 kb interstitial deletion of the X chromosome (Xp21.1-p21.2) that includes exons 4 to 6 of the IL1RAPL1 gene in an 8-year-old girl with severe intellectual disability and behavioral disorder with a history of developmental regression. Overnight continuous video electroencephalography revealed electrical status epilepticus in sleep (ESES). This case expands the clinical genetic spectrum of IL1RAPL1-related neurodevelopmental disorders and highlights a new genetic association of ESES.


Sign in / Sign up

Export Citation Format

Share Document