scholarly journals Myotonia Congenita: Clinical Characteristic and Mutation Spectrum of CLCN1 in Chinese Patients

2021 ◽  
Vol 9 ◽  
Author(s):  
Chaoping Hu ◽  
Yiyun Shi ◽  
Lei Zhao ◽  
Shuizhen Zhou ◽  
Xihua Li

Background:CLCN1-related myotonia congenita (MC) is one of the most common forms of non-dystrophic myotonia, in which muscle relaxation is delayed after voluntary or evoked contraction. However, there is limited data of clinical and molecular spectrum of MC patients in China.Patients and Methods: Five patients with myotonia congenita due to mutations in CLCN1 gene were enrolled, which were identified through trio-whole-exome sequencing or panel-based next-generation sequencing test. The clinical presentation, laboratory data, electrophysiological tests, muscular pathology feature, and genetic results were collected and reviewed. We also searched all previously reported cases of MC patients with genetic diagnosis in Chinese populations, and their data were reviewed.Results: The median onset age of five patients was 3.0 years old, ranging from 1.0 to 5.0 years old, while the median age of admit was 5.0 years old, ranging from 3.5 to 8.8 years old. Five patients complained of muscle stiffness when rising from chairs or starting to climb stairs (5/5, 100.0%), four patients complained of delayed relaxation of their hands after forceful grip (4/5, 80.0%), all of which improved with exercise (warm-up phenomenon) (5/5, 100%). Electromyogram was conducted in five patients, which all revealed myotonic change (100%). Genetic tests revealed nine potential disease-causing variants in CLCN1 gene, including two novel variants: c.962T>A (p.V321E) and c.1250A>T (p.E417V). Literature review showed that 43 MC Chinese patients with genetic diagnosis have been reported till now (including our five patients). Forty-seven variants in CLCN1 gene were found, which consisted of 33 missense variants, 6 nonsense variants, 5 frame-shift variants, and 3 splicing variants. Variants in exon 8, 15, 12, and 16 were most prevalent, while the most common variants were c.892G>A (p.A298T) (n = 9), c.139C>T (p.R47W) (n = 3), c.1205C>T(p.A402V) (n = 3), c.1657A>T (p.I553F) (n = 3), c.1679T>C (p.M560T) (n = 3), c.350A>G (p.D117G) (n = 2), c.762C>G (p.C254W) (n = 2), c.782A>G (P.Y261C) (n = 2), and c.1277C>A (p.T426N) (n = 2).Conclusion: Our results reported five CLCN1-related MC patients, which expanded the clinical and genetic spectrum of MC patients in China. Based on literature review, 43MC Chinese patients with genetic diagnosis have been reported till now, and variants in exon eight were most prevalent in Chinese MC patients while c.892G>A (p.A298T) was probably a founder mutation.

2020 ◽  
Author(s):  
Mandy Ho-Yin Tsang ◽  
Anna Ka-Yee Kwong ◽  
Kate Lok-San Chan ◽  
Jasmine Lee-Fong Fung ◽  
Mullin Ho-Chung Yu ◽  
...  

Abstract BackgroundMitochondrial diseases (MDs) are a group of clinically and genetically heterogeneous disorders characterized by defects in oxidative phosphorylation. Since clinical phenotypes of MDs may be non-specific, genetic diagnosis is crucial for guiding disease management. In the current study, whole-exome sequencing (WES) was performed for our paediatric-onset MD cohort of a Southern Chinese origin, with the aim of identifying key disease-causing variants in the Chinese patients with MDs.MethodsWe recruited Chinese patients who had paediatric-onset MDs and a minimum mitochondrial disease criteria (MDC) score of 3. Patients with positive target gene or mitochondrial DNA sequencing results were excluded. WES was performed, variants with population frequency ≤1% were analysed for pathogenicity on the basis of the American College of Medical Genetics and Genomics guidelines.ResultsSixty-six patients with pre-biopsy MDC scores of 3–8 were recruited. The overall diagnostic yield was 35% (23/66). Eleven patients (17%) were found to have mutations in MD-related genes, with COQ4 having the highest mutation rate owing to the Chinese-specific founder mutation (4/66, 6%). Twelve patients (12/66, 18%) had mutations in non-MD-related genes: ATP1A3 (n=3, two were siblings), ALDH5A1 , ARX , FA2H , KCNT1 , LDHD , NEFL , NKX2-2 , TBCK , and WAC.ConclusionsWe confirmed that the COQ4 :c.370G>A, p.(Gly124Ser) variant was a recurrent founder mutation among the Southern Chinese population. Screening for this mutation should therefore be considered while diagnosing Chinese patients suspected to have MDs. Furthermore, WES has proven to be useful in detecting variants in patients suspected to have MDs because it helps to obtain an unbiased and precise genetic diagnosis for these diseases, which are genetically heterogeneous.


2020 ◽  
Author(s):  
Mandy Ho-Yin Tsang ◽  
Anna Ka-Yee Kwong ◽  
Kate Lok-San Chan ◽  
Jasmine Lee-Fong Fung ◽  
Mullin Ho-Chung Yu ◽  
...  

Abstract Background Mitochondrial diseases (MDs) are a group of clinically and genetically heterogeneous disorders characterized by defects in oxidative phosphorylation. Since clinical phenotypes of MDs may be non-specific, genetic diagnosis is crucial for guiding disease management. In the current study, whole-exome sequencing (WES) was performed for our paediatric-onset MD cohort of a Southern Chinese origin, with the aim of identifying key disease-causing variants in the Chinese patients with MDs.Methods We recruited Chinese patients who had paediatric-onset MDs and a minimum mitochondrial disease criteria (MDC) score of 3. Patients with positive target gene or mitochondrial DNA sequencing results were excluded. WES was performed, variants with population frequency ≤1% were analysed for pathogenicity on the basis of the American College of Medical Genetics and Genomics guidelines.Results Sixty-six patients with pre-biopsy MDC scores of 3–8 were recruited. The overall diagnostic yield was 35% (23/66). Eleven patients (17%) were found to have mutations in MD-related genes, with COQ4 having the highest mutation rate owing to the Chinese-specific founder mutation (4/66, 6%). Twelve patients (12/66, 18%) had mutations in non-MD-related genes: ATP1A3 (n=3, two were siblings), ALDH5A1, ARX, FA2H, KCNT1, LDHD, NEFL, NKX2-2, TBCK, and WAC.Conclusions We confirmed that the COQ4:c.370G>A, p.(Gly124Ser) variant was a recurrent founder mutation among the Southern Chinese population. Screening for this mutation should therefore be considered while diagnosing Chinese patients suspected to have MDs. Furthermore, WES has proven to be useful in detecting variants in patients suspected to have MDs because it helps to obtain an unbiased and precise genetic diagnosis for these diseases, which are genetically heterogeneous.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Mandy H.Y. Tsang ◽  
Anna K.Y. Kwong ◽  
Kate L.S. Chan ◽  
Jasmine L.F. Fung ◽  
Mullin H.C. Yu ◽  
...  

Abstract Background Mitochondrial diseases (MDs) are a group of clinically and genetically heterogeneous disorders characterized by defects in oxidative phosphorylation. Since clinical phenotypes of MDs may be non-specific, genetic diagnosis is crucial for guiding disease management. In the current study, whole-exome sequencing (WES) was performed for our paediatric-onset MD cohort of a Southern Chinese origin, with the aim of identifying key disease-causing variants in the Chinese patients with MDs. Methods We recruited Chinese patients who had paediatric-onset MDs and a minimum mitochondrial disease criteria (MDC) score of 3. Patients with positive target gene or mitochondrial DNA sequencing results were excluded. WES was performed, variants with population frequency ≤ 1% were analysed for pathogenicity on the basis of the American College of Medical Genetics and Genomics guidelines. Results Sixty-six patients with pre-biopsy MDC scores of 3–8 were recruited. The overall diagnostic yield was 35% (23/66). Eleven patients (17%) were found to have mutations in MD-related genes, with COQ4 having the highest mutation rate owing to the Chinese-specific founder mutation (4/66, 6%). Twelve patients (12/66, 18%) had mutations in non-MD-related genes: ATP1A3 (n = 3, two were siblings), ALDH5A1, ARX, FA2H, KCNT1, LDHD, NEFL, NKX2-2, TBCK, and WAC. Conclusions We confirmed that the COQ4:c.370G>A, p.(Gly124Ser) variant, was a founder mutation among the Southern Chinese population. Screening for this mutation should therefore be considered while diagnosing Chinese patients suspected to have MDs. Furthermore, WES has proven to be useful in detecting variants in patients suspected to have MDs because it helps to obtain an unbiased and precise genetic diagnosis for these diseases, which are genetically heterogeneous.


2020 ◽  
Vol 21 (S1) ◽  
Author(s):  
Peter Sparber ◽  
Margarita Sharova ◽  
Alexandra Filatova ◽  
Olga Shchagina ◽  
Evgeniya Ivanova ◽  
...  

Abstract Background Myotonia congenita is a rare neuromuscular disease, which is characterized by a delay in muscle relaxation after evoked or voluntary contraction. Myotonia congenita can be inherited in a dominant (Thomsen disease) and recessive form (Becker disease) and both are caused by pathogenic variants in the CLCN1 gene. Noncanonical splice site variants are often classified as variants of uncertain significance, due to insufficient accuracy of splice-predicting tools. Functional analysis using minigene plasmids is widely used in such cases. Moreover, functional analysis is very useful in investigation of the disease pathogenesis, which is necessary for development of future therapeutic approaches. To our knowledge only one noncanonical splice site variant in the CLCN1 gene was functionally characterized to date. We further contribute to this field by evaluation the molecular mechanism of splicing alteration caused by the c.1582 + 5G > A in a homozygous state. Case presentation We report a clinical case of an affected 6-y.o boy with athletic appearance due to muscle hypertrophy, calf muscle stiffness, cramping and various myotonic signs in a consanguineous family with no history of neuromuscular disorders. The neurological examination showed percussion-activated myotonia in the hands and legs. Plasma creatine kinase enzyme and transaminases levels were normal. Electromyography at the time of examination shows myotonic runs in the upper and lower extremities. Conclusions Functional analysis of the variant in a minigene system showed alteration of splicing leading to loss of function, thereby confirming that the variant is pathogenic.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chaoping Hu ◽  
Qiong Xu ◽  
Jin Shen ◽  
Yi Wang

Background: As one of the assembly factors of complex I in the mitochondrial respiratory chain, FOXRED1 plays an important role in mitochondrial function. However, only a few patients with mitochondrial encephalopathy due to FOXRED1 defects have been reported.Methods: Two Chinese patients with mitochondrial encephalopathy due to mutations in FOXRED1 were identified through trio whole-exome sequencing. The clinical presentation, laboratory data, brain imaging findings, and genetic results were collected and reviewed. All previously reported cases with FOXRED1-related mitochondrial encephalopathy were collected using a PubMed search, and their data were reviewed.Results: Two patients presented with severe neurodevelopmental delay, epilepsy, high lactic acid levels, and remarkable diffuse brain atrophy and polycystic encephalomalacia during early infancy. Trio whole-exome sequencing revealed compound heterozygous variants in both patients: one case harbored a c.606_607delAG frameshift variant and a c.1054C>T (p.R352W) variant. At the same time, the other carried a novel c.352C>T (p.Q118X) variant and a reported c.1054C>T (p.R352W) variant. To date, nine patients have been reported with FOXRED1 defects, including our two cases. The most common presentations were neurodevelopment delay (100%), epilepsy (80%), poor feeding (30%), and vision loss (20%). Multisystem involvement comprised cardiovascular dysfunction (30%), abnormal liver function (20%), and hypoglycemia (10%). The neuroimaging results ranged from normal to severe cerebral atrophy and polycystic encephalomalacia in early infancy. Eleven pathogenic variants in FOXRED1 have been reported, comprising six missense variants, two non-sense variants, two frameshift variants, and one splice variant; among these the c.1054C>T (p.R352W) and c.612_615dupAGTG (p.A206SfsX15) variants are more common.Conclusion:FOXRED1-related mitochondrial disorders have high clinical and genetic heterogeneity. Our study expanded the clinical and genetic spectrum of FOXRED1 defects. Early infantile onset and progressive encephalopathy are the most common clinical presentations, while the variants c.1054C>T (p.R352W) and c.612_615dupAGTG (p.A206SfsX15) may be critical founder mutations.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wen-yu Gong ◽  
Fan-na Liu ◽  
Liang-hong Yin ◽  
Jun Zhang

Alport syndrome (AS) is an inherited kidney disease caused by defects in type IV collagen, which is characterized by hematuria, progressive nephritis or end-stage renal disease (ESRD), hearing loss, and occasionally ocular lesions. Approximately 80% of AS cases are caused by X-linked mutations in the COL4A5 gene. This study explored novel deletion and missense mutations in COL4A5 responsible for renal disorder in two Han Chinese families. In pedigree 1, the five male patients all had ESRD at a young age, while the affected female members only presented with microscopic hematuria. Whole exome sequencing and Sanger sequencing identified a novel frameshift deletion mutation (c.422_428del, p.Leu142Valfs ∗ 11) in exon 7 of COL4A5. In pedigree 2, the 16-year-old male proband had elevated serum creatinine (309 μmol/L) without extrarenal manifestations, while his mother only manifested with hematuria. A missense mutation (c.476G>T, p.Gly159Val) was found in exon 9 of the COL4A5 gene. Neither of these mutations was present in the Exome Variant Server of the NHLBI-ESP database, nor was it found in the ExAC or 1000 Genomes databases. Through the literature review, it was found that male Chinese patients with X-linked AS carried COL4A5 deletion or missense mutations had a more severe phenotype than female patients, particularly in proteinuria and impaired renal function. Compared to male patients with missense mutations, patients in whom deletion mutations were found were more likely to progress to ESRD (15.4% vs. 36.0%, P = 0.041 ). This study identified two novel COL4A5 mutations in Chinese families with X-linked AS, expanded the mutational spectrum of the COL4A5 gene, and presented findings that are significant for the screening and genetic diagnosis of AS.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Do Hyeon Cha ◽  
Heon Yung Gee ◽  
Raul Cachau ◽  
Jong Mun Choi ◽  
Daeui Park ◽  
...  

Abstract Differentiating between inherited renal hypouricemia and transient hypouricemic status is challenging. Here, we aimed to describe the genetic background of hypouricemia patients using whole-exome sequencing (WES) and assess the feasibility for genetic diagnosis using two founder variants in primary screening. We selected all cases (N = 31) with extreme hypouricemia (<1.3 mg/dl) from a Korean urban cohort of 179,381 subjects without underlying conditions. WES and corresponding downstream analyses were performed for the discovery of rare causal variants for hypouricemia. Two known recessive variants within SLC22A12 (p.Trp258*, pArg90His) were identified in 24 out of 31 subjects (77.4%). In an independent cohort, we identified 50 individuals with hypouricemia and genotyped the p.Trp258* and p.Arg90His variants; 47 of the 50 (94%) hypouricemia cases were explained by only two mutations. Four novel coding variants in SLC22A12, p.Asn136Lys, p.Thr225Lys, p.Arg284Gln, and p.Glu429Lys, were additionally identified. In silico studies predict these as pathogenic variants. This is the first study to show the value of genetic diagnostic screening for hypouricemia in the clinical setting. Screening of just two ethnic-specific variants (p.Trp258* and p.Arg90His) identified 87.7% (71/81) of Korean patients with monogenic hypouricemia. Early genetic identification of constitutive hypouricemia may prevent acute kidney injury by avoidance of dehydration and excessive exercise.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna Ka-Yee Kwong ◽  
Mandy Ho-Yin Tsang ◽  
Jasmine Lee-Fong Fung ◽  
Christopher Chun-Yu Mak ◽  
Kate Lok-San Chan ◽  
...  

Abstract Background Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. Results We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. Conclusions A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.


2014 ◽  
Vol 59 (5) ◽  
pp. 256-261 ◽  
Author(s):  
Min Zhu ◽  
Xuan Zhu ◽  
Xueliang Qi ◽  
Ding Weijiang ◽  
Yajing Yu ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Somayeh Khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh-Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods. Methods This study was a report on a research study of two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects. Conclusion In this study, whole exome sequencing were used as a first approach strategy to identify the two novel variants in MYO15A in two Iranian families with ARNSHL.


Sign in / Sign up

Export Citation Format

Share Document