scholarly journals Overexpression of MYCT1 Inhibits Proliferation and Induces Apoptosis in Human Acute Myeloid Leukemia HL-60 and KG-1a Cells in vitro and in vivo

2018 ◽  
Vol 9 ◽  
Author(s):  
Shuang Fu ◽  
Yu Fu ◽  
Fang Chen ◽  
Yanping Hu ◽  
Bi Quan ◽  
...  
Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4754-4761 ◽  
Author(s):  
HJ Sutherland ◽  
A Blair ◽  
RW Zapf

Despite the usual uniform and primitive appearance of cells derived from the leukemic clone in most patients with acute myeloid leukemia (AML), there is considerable heterogeneity among leukemic blasts, particularly with respect to their capacity to proliferate and/or self renew. We have assessed whether these differences in proliferative potential are correlated with the phenotypic changes that characterize normal hematopoiesis, which might suggest an analogous hierarchy of AML progenitors. We have used the ability of primitive AML cells to persist or produce blast colony forming cells (CFU-blast) detected after 2 to 8 weeks in the presence of growth factors in suspension cultures (SC) termed SC-initiating cells (IC), or with stroma in long-term cultures (LTC-IC) as a quantitative assay for a cell that may have primitive characteristics. This SC assay is linear, cell concentration independent, and the frequency of SC-IC by limiting dilution analysis is lower than primary CFU-blast. The average output of CFU-blast after 2 to 8 weeks by individual SC-IC varied between 2 and more than 100 in individual patients. Leukemic blasts were sorted based on their expression of antigens previously found useful to characterize normal progenitor differentiation, and analyzed for the percentage of CFU- blast SC-IC, and leukemic LTC-IC within each fraction. All of these progenitor types were heterogeneous in their expression of CD45RA and CD33, but expressed uniformly low levels of CD15 and differed from normal primitive progenitors in their high expression of HLA-DR. CFU- blast had a significantly higher expression of CD71 and CD38 as compared with SC-IC or leukemic LTC-IC. In patients with CD34+ blasts, the majority of their SC-IC at 4 weeks were CD34+/CD38-; however, patients with CD34- blasts had at least some CD34- progenitors. These results show that while heterogeneity exists between patients, it is possible to physically separate subpopulations of AML cells with different proliferative potentials. It also provides some support for the concept that quantitation of leukemic cells capable of producing CFU-blast for 4 weeks or more in vitro measures a less frequent leukemic progenitor with higher proliferative potential that may be the only relevant cell for maintaining the leukemic clone in vivo.


2005 ◽  
Vol 79 (20) ◽  
pp. 13190-13194 ◽  
Author(s):  
Lucas Chan ◽  
Darren Nesbeth ◽  
Taylor MacKey ◽  
Joanna Galea-Lauri ◽  
Joop Gäken ◽  
...  

ABSTRACT Nonviral producer cell proteins incorporated into retroviral vector surfaces profoundly influence infectivity and in vivo half-life. We report the purification and concentration of lentiviral vectors using these surface proteins as an efficient gene transduction strategy. Biotinylation of these proteins and streptavidin paramagnetic particle concentration enhances titer 400- to 2,500-fold (to 109 CFU/ml for vesicular stomatitis virus G protein and 5 × 108 for amphotropic murine leukemia virus envelope). This method also uses newly introduced membrane proteins (B7.1 and ΔLNGFR) directed to lentiviral surfaces, allowing up to 17,000-fold concentrations. Particle conjugation of lentivirus allows facile manipulation in vitro, resulting in the transduction of 48 to 94% of human acute myeloid leukemia blasts.


2009 ◽  
Vol 69 (10) ◽  
pp. 4150-4158 ◽  
Author(s):  
Adedayo Oke ◽  
Daniel Pearce ◽  
Robert W. Wilkinson ◽  
Claire Crafter ◽  
Rajesh Odedra ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (7) ◽  
pp. 971-981 ◽  
Author(s):  
Rachel E. Rau ◽  
Benjamin A. Rodriguez ◽  
Min Luo ◽  
Mira Jeong ◽  
Allison Rosen ◽  
...  

Key Points Data from Dnmt3a−/− mice implicate Dot1l as a critical mediator of the malignant gene expression program of Dnmt3a-mediated leukemia. Pharmacologic inhibition of DOT1L exerts potent antileukemic activity in DNMT3A-mutant human acute myeloid leukemia in vitro and in vivo.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3385
Author(s):  
Axel H. Schönthal ◽  
Steve Swenson ◽  
Radu O. Minea ◽  
Hye Na Kim ◽  
Heeyeon Cho ◽  
...  

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.


2016 ◽  
Vol 113 (43) ◽  
pp. E6669-E6678 ◽  
Author(s):  
Mark A. Gregory ◽  
Angelo D’Alessandro ◽  
Francesca Alvarez-Calderon ◽  
Jihye Kim ◽  
Travis Nemkov ◽  
...  

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.


Sign in / Sign up

Export Citation Format

Share Document